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ON A CLASS OF QUANTUM ALPHA-CONVEX FUNCTIONS

KHALIDA INAYAT NOOR∗ AND RIZWAN S. BADAR

Abstract. Let f : f(z) = z +
∑∞

n=2 anz
n be analytic in the open unit

disc E. Then f is said to belong to the class Mα of alpha-convex functions,

if it satisfies the condition

ℜ
{
(1− α)

zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)

}
> 0, (z ∈ E).

In this paper, we introduce and study q-analogue of the class Mα by using

concepts of Quantum Analysis. It is shown that the functions in this new
class M(q, α) are q-starlike. A problem related to q-Bernardi operator is
also investigated.
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1. Introduction

Let A be the class of analytic functions f defined in the open unit disc
E = {z : |z| < 1} and given by

f(z) = z +

∞∑
n=2

anz
n. (1)

Let C, S∗ and Mα be the subclasses of A which consist of convex, starlike and
α-convex functions, respectively. These classes are defined as follows.

C =

{
f ∈ A : ℜ

{
(zf ′(z))′

f ′(z)

}
> 0, z ∈ E

}
S∗ =

{
f ∈ A : ℜ

{
zf ′(z)

f(z)

}
> 0, z ∈ E

}
Mα =

{
f ∈ A : ℜ

{
(1− α)

zf ′(z)

f(z)
+ α

(zf ′(z))′

f ′(z)

}
> 0, α ≥ 0, z ∈ E

}
.
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The q-analogues of the classes C and S∗ have been introduced and studied pre-
viously, see [2, 11, 13]. In this paper, we define q-analogue of a certain subclass
of Mα and investigate some of its properties.

Quantum or q-calculus is ordinary calculus without limit. Recently it has
attracted attention of many researchers due to its vast applications in many
branches of mathematics and physics. Ismail et. al. [2] used q-derivative con-
cept to introduce the class S∗

q , 0 < q < 1, which is a generalization of the
class S∗. It is shown that ∩0<q<1S

∗
q = S∗. For geometric properties of some

classes of analytic functions involving q-calculus, see [6, 7, 8, 9, 10, 11, 12] and
the references therein.

We recall some basic concepts from q-calculus which will be used in our dis-
cussion and refer to [3, 4] for more details.

The q-derivative of a function f ∈ A is defined by

Dqf(z) =
f(qz)− f(z)

(q − 1)z
, z ̸= 0,

and Dqf(0) = f ′(0), where q ∈ (0, 1), see [3].

For a function g(z) = zn, the q-derivative is

Dqg(z) =
1− qn

1− q
zn−1 = [n]qz

n−1,

where

[n]q =
1− qn

1− q
.

We note that, as q → 1−, Dqf(z) → f ′(z) and [n]q → n.
Thus, for f ∈ A and given by (1), we have

Dqf(z) = 1 +

∞∑
n=2

[n]qanz
n−1.

Also, as an inverse of q-derivative, Jackson [4] introduced the q-integral of
f ∈ A given by ∫ z

0

f(t)dqt = z(1− q)
∞∑
n=0

qnf(qnz),

provided the series converges.
Under the hypothesis of the definition, the q-difference operator Dq satisfies cer-
tain algebraic properties and for details we refer to [1, 8, 10].

Let f, g ∈ A. Then f is subordinate to g, written as f ≺ g or f(z) ≺ g(z),
z ∈ E, if there exists a Schwartz function w(z) analytic in E with w(0) = 0 and
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|w(z)| < 1 for z ∈ E such that f(z) = g(w(z)). If g is univalent in E, then f ≺ g,
if and only if, f(0) = g(0) and f(E) ⊂ g(E).

We recall the following definitions:

Cq(γ) =

{
f ∈ A : ℜ

(
Dq(zDqf(z))

Dqf(z)

)
> γ, 0 ≤ γ < 1, z ∈ E

}
S∗(γ) = {F ∈ A : F = zDqf, f ∈ Cq(γ), 0 ≤ γ < 1, z ∈ E}.

Here and throughout this paper, it is assumed that q ∈ (0, 1), z ∈ E, unless
otherwise stated.

Definition 1.1. Let f ∈ A, q ∈ (0, 1). Then f is said to belong to the class
ST (q) if it satisfies the following condition, for z ∈ E∣∣∣∣

{ zDqf(z)
f(z) − 1

}{ zDqf(z)
f(z) + 1

}∣∣∣∣ < q. (2)

When q → 1−, the class ST (q) coincides with the class S∗ of starlike functions.

Similarly, f ∈ A is said to belong to the class CV (q) if, for z ∈ E∣∣∣∣
{Dq(zDqf(z))

Dqf(z)
− 1
}{Dq(zDqf(z))

Dqf(z)
+ 1
}∣∣∣∣ < q (3)

For q → 1−, CV (q) → C, the class of convex functions.

Definition 1.2. Let f ∈ A and let, for α ≥ 0, z ∈ E

Jq(α, f) = α

{
Dq(zDqf(z))

Dqf(z)

}
+ (1− α)

{
zDqf(z)

f(z)

}
. (4)

Then f ∈M(q, α), if the following condition is satisfied. That is,∣∣∣∣
{
Jq(α, f)− 1

}{
Jq(α, f) + 1

}∣∣∣∣ < q.

When q → 1−, M(q, α) reduces to the class Mα of α-convex functions.

We note that M(q, 0) = ST (q) and M(q, 1) = CV (q).

2. Main Results

Theorem 2.1. Let f ∈M(q, α), α ≥ 0. Then f ∈ ST (q).

Proof. The case α = 0 is trivial. We suppose α > 0. To prove that f ∈ ST (q),
we have to show that f satisfies condition (1), which is equivalent to

zDqf(z)

f(z)
≺ 1− qz

1 + qz
, q ∈ (0, 1).
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Let

zDqf(z)

f(z)
≺ 1− qw(z)

1 + qw(z)
. (5)

Clearly w(0) = 0 and 1 + qw(z) ̸= 0. We shall show that |z(z)| < 1, ∀z ∈ E.
We suppose on the contrary that there exists z0, z◦ ∈ E, such that |w(z0)| = 1.
Then

Jq(α, f(z0)) =
1− qw(z◦)

1 + qw(z0)
− 2αqmw(z0)

(1 + qw(z0))(1− qw(z0))
, (6)

where we have used (5) and q-analogue of the well known Jack’s Lemma for
which we refer to [1]. It is shown that if w(z) is analytic in E with w(0) = 0,
then |w(z)| attains its maximum value on the circle |z| = r at a point zo ∈ E
and in this case z0Dqw(z0) = mw(z0), m ≥ 1.

Now, from (6) ∣∣∣∣Jq(α, f(z0))− 1

Jq(α, f(z0)) + 1

∣∣∣∣ Q q

if

|1 + αm− qw(z0)|2 Q |1− (1 + αm)qw(z0)|2,
or

(2αm+ α2m2)(1− q2) Q 0.

Since α and m are positive and q ∈ (0, 1), so the last expression is positive. This
leads to conclude that f /∈ M(q, α), which is a contradiction. Thus, |w(z)| <
1, ∀z ∈ E. Hence

zDqf(z)
f(z) ≺ 1−qz

1+qz and this completes the proof. �

Theorem 2.2. For 0 ≤ β < α, M(q, α) ⊂M(q, β).

Proof. The case β = 0 follows directly from Theorem 2.1. Therefore we suppose
β > 0 and f ∈ M(q, α). Then there exist w1(z), w2(z) which are analytic in E
with wi(0) = 0 and |wi(z)| < 1 for i = 1, 2 such that

zDqf(z)

f(z)
=

1− qw1(z)

1 + qw1(z)
= p1(z) ≺

1− qz

1 + qz
by Theorem 2.1

and

Jq(α, f(z)) =
1− qw2(z)

1 + qw2(z)
= p2(z) ≺

1− qz

1 + qz
.

For β < α, we can write

Jq(β, f(z)) =
β

α
Jq(α, f(z)) +

(
1− β

α

)
zDqf(z)

f(z)

=
β

α
p1(z) +

(
1− β

α

)
p2(z)
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= p(z).

Using subordination principle, it follows that p(z) ≺ 1−qz
1+qz .

Therefore,

Jq(β, f(z)) ≺
1− qz

1 + qz

and this proves f ∈M(q, β) in E. �

Corollary 2.3. For α ≥ 1
q , M(α, q) ⊂ CV (q).

When q → 1−, we obtain the established result that α-convex functions are
convex for α ≥ 1, see [5].

Remark 2.1. From Theorem 2.2, we have

M(q, α) ⊂M(q, β) ⊂ ST (q), 0 ≤ β < α. (7)

In view of (7), it follows that, given a function in ST (q), we can find the
largest possible value of α such that f ∈M(q, α), α ≥ 0.

We define the following.

Definition 2.4. Let f ∈ ST (q) and

α = α(f) = l.u.b{β : f ∈M(q, β), β ≥ 0}.

Then we say that f is q-starlike of order q and type α and we write f ∈M∗(q, α),
where α is nonnegative and may be infinite.

If f ∈M∗(q, α), then f ∈M(q, β) for all β, 0 ≤ β ≤ α.
That is

Jq(β, f) =
1− qw(z)

1 + qw(z)
, 0 ≤ β ≤ α,

where w(z) is analytic in E, w(0) = 0 and |w(z)| < 1 in E. When β → α,
f ∈M(q, α).
Hence f ∈M∗(q, α) for α <∞, if and only if,

f ∈M(q, β), for 0 ≤ β ≤ α

and f /∈M(q, β) for β > α. Thus, we write ST (q) as a disjoint union

ST (q) = ∪α≥0M
∗(q, α).

Theorem 2.5. Let f ∈ M∗(q, α), α > 0. For 0 < β < α, choose the branch of

{ zDqf(z)
f(z) }β which takes value 1 at the origin. Then Fβ ∈ ST (q), where

Fβ(z) = f(z)

{
zDqf(z)

f(z)

}β
. (8)
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Proof. Let f ∈M∗(q, α). This implies f ∈M(q, β) for all β < α.
Now q-logarithmic differentiation of (8) yields

zDqFβ(z)

Fβ(z)
=

zDqf(z)

f(z)
+ β

{
Dq(zDqf(z))

Dqf(z)
− zDqf(z)

f(z)

}
= (1− β)

zDqf(z)

f(z)
+ β

(
Dq(zDqf(z))

Dqf(z)

)
= Jq(β, f) ≺

1− qz

1 + qz
.

This implies Fβ ∈ ST (q), and the proof is complete. �

Remark 2.2. If we denote by B(q, α) the subclass of q-Bazilevic functions f
defined by

f(z) =

{
α

∫ z

0

(F (t))αt−1dqt

} 1
α

,

where F ∈ ST (q) for α > 0, then it can easily be seen that

B

(
q,

1

α

)
=M(q, α).

Theorem 2.6. Let
zDqf(z)
f(z) ≺ 1

1−qz , g ∈M(q, 0) and, for allm ∈ N = {1, 2, 3, ...},
define

Fm(z) =
[m+ 1]q
(g(z))m

∫ z

0

tm−1f(t)dqt, q >
1

2m
. (9)

Then

ℜ
{
zDqFm(z)

Fm(z)

}
> 0 for |z| < 1

q
.

Proof. We can write (9) as[
Fm(z)

(
g(z)

z

)m]
=

[m+ 1]q
zm

∫ z

0

tm−1f(t)dqt

= Em(z). (10)

We note that right hand side of (10) represents q-Bernardi integral operator and
it is shown in [?] that

zDqEm(z)

Em(z)
≺ 1

1− qz
, (11)

if f satisfies the given condition in E.

Now differentiating (10) q-logarithmically, and with some computation, we
have

zDqFm(z)

Fm(z)
= −m

[
zDqg(z)

g(z)
− 1

]
+
zDqEm(z)

Em(z)
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= −mh1(z) +m+ h2(z), (12)

where

h1(z) =
zDqg(z)

g(z)
,

h2(z) =
zDqEm(z)

Em(z)
.

Since g ∈M(q, 0), we have

1− qr

1 + qr
≤ |h1(z)| ≤

1 + qr

1− qr
. (13)

Also, from (11), it follows that

1

1 + qr
≤ |h2(z)| ≤

1

1− qr
. (14)

Thus, using (13), (14), it follows from (12) that

ℜ
{
zDqFm(z)

Fm(z)

}
≥ −m1 + qr

1− qr
+m+

1

1 + qr

=
−m(1 + qr)2 +m(1− q2r2) + (1− qr)

(1 + qr)(1− qr)

=
1 + q(1− 2m)r − 2mq2r2

(1 + qr)(1− qr)

=
T (r)

(1 + qr)(1− qr)
, (15)

where

T (r) = 1− q(2m− 1)r − 2mq2r2.

Clealry

T (0) = 1 > 0, T (1) = 1− q(2m− 1)− 2mq2 < 0, for q >
1

2m
.

Thus T (r) = 0 has a least positive root rq =
1
q for which the right hand side of

(15) is positive. This proves the required result. �

As a special case, we note that, for q → 1−, f ∈ S∗( 12 ); g ∈ S∗. Then Fm
defined by (9) is starlike in E.
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