ON A CLASS OF QUANTUM ALPHA-CONVEX FUNCTIONS

KHALIDA INAYAT NOOR* AND RIZWAN S. BADAR

Abstract. Let $f: f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in the open unit $\operatorname{disc} E$. Then f is said to belong to the class M_{α} of alpha-convex functions, if it satisfies the condition

$$
\Re\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0, \quad(z \in E)
$$

In this paper, we introduce and study q-analogue of the class M_{α} by using concepts of Quantum Analysis. It is shown that the functions in this new class $M(q, \alpha)$ are q-starlike. A problem related to q-Bernardi operator is also investigated.

AMS Mathematics Subject Classification: 30C45, 30C10, 47B38.
Key words and phrases : Alpha-convex, q-starlike, q-convex, Subordination, Bernardi operator

1. Introduction

Let A be the class of analytic functions f defined in the open unit disc $E=\{z:|z|<1\}$ and given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

Let C, S^{*} and M_{α} be the subclasses of A which consist of convex, starlike and α-convex functions, respectively. These classes are defined as follows.

$$
\begin{aligned}
C & =\left\{f \in A: \Re\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0, z \in E\right\} \\
S^{*} & =\left\{f \in A: \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in E\right\} \\
M_{\alpha} & =\left\{f \in A: \Re\left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}>0, \alpha \geq 0, z \in E\right\}
\end{aligned}
$$

[^0]The q-analogues of the classes C and S^{*} have been introduced and studied previously, see $[2,11,13]$. In this paper, we define q-analogue of a certain subclass of M_{α} and investigate some of its properties.

Quantum or q-calculus is ordinary calculus without limit. Recently it has attracted attention of many researchers due to its vast applications in many branches of mathematics and physics. Ismail et. al. [2] used q-derivative concept to introduce the class $S_{q}^{*}, \quad 0<q<1$, which is a generalization of the class S^{*}. It is shown that $\cap_{0<q<1} S_{q}^{*}=S^{*}$. For geometric properties of some classes of analytic functions involving q-calculus, see $[6,7,8,9,10,11,12]$ and the references therein.

We recall some basic concepts from q-calculus which will be used in our discussion and refer to $[3,4]$ for more details.

The q-derivative of a function $f \in A$ is defined by

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z}, \quad z \neq 0
$$

and $D_{q} f(0)=f^{\prime}(0)$, where $q \in(0,1)$, see [3].
For a function $g(z)=z^{n}$, the q-derivative is

$$
D_{q} g(z)=\frac{1-q^{n}}{1-q} z^{n-1}=[n]_{q} z^{n-1}
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q}
$$

We note that, as $q \rightarrow 1^{-}, D_{q} f(z) \rightarrow f^{\prime}(z)$ and $[n]_{q} \rightarrow n$.
Thus, for $f \in A$ and given by (1), we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1}
$$

Also, as an inverse of q-derivative, Jackson [4] introduced the q-integral of $f \in A$ given by

$$
\int_{0}^{z} f(t) \mathrm{d}_{q} t=z(1-q) \sum_{n=0}^{\infty} q^{n} f\left(q^{n} z\right)
$$

provided the series converges.
Under the hypothesis of the definition, the q-difference operator D_{q} satisfies certain algebraic properties and for details we refer to $[1,8,10]$.

Let $f, g \in A$. Then f is subordinate to g, written as $f \prec g$ or $f(z) \prec g(z)$, $z \in E$, if there exists a Schwartz function $w(z)$ analytic in E with $w(0)=0$ and
$|w(z)|<1$ for $z \in E$ such that $f(z)=g(w(z))$. If g is univalent in E, then $f \prec g$, if and only if, $f(0)=g(0)$ and $f(E) \subset g(E)$.

We recall the following definitions:

$$
\begin{aligned}
C_{q}(\gamma) & =\left\{f \in A: \Re\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right)>\gamma, 0 \leq \gamma<1, z \in E\right\} \\
S^{*}(\gamma) & =\left\{F \in A: F=z D_{q} f, f \in C_{q}(\gamma), 0 \leq \gamma<1, z \in E\right\}
\end{aligned}
$$

Here and throughout this paper, it is assumed that $q \in(0,1), z \in E$, unless otherwise stated.

Definition 1.1. Let $f \in A, q \in(0,1)$. Then f is said to belong to the class $S T(q)$ if it satisfies the following condition, for $z \in E$

$$
\begin{equation*}
\left|\frac{\left\{\frac{z D_{q} f(z)}{f(z)}-1\right\}}{\left\{\frac{z D_{q} f(z)}{f(z)}+1\right\}}\right|<q \tag{2}
\end{equation*}
$$

When $q \rightarrow 1^{-}$, the class $S T(q)$ coincides with the class S^{*} of starlike functions.
Similarly, $f \in A$ is said to belong to the class $C V(q)$ if, for $z \in E$

$$
\begin{equation*}
\left|\frac{\left\{\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}-1\right\}}{\left\{\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}+1\right\}}\right|<q \tag{3}
\end{equation*}
$$

For $q \rightarrow 1^{-}, C V(q) \rightarrow C$, the class of convex functions.
Definition 1.2. Let $f \in A$ and let, for $\alpha \geq 0, \quad z \in E$

$$
\begin{equation*}
J_{q}(\alpha, f)=\alpha\left\{\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right\}+(1-\alpha)\left\{\frac{z D_{q} f(z)}{f(z)}\right\} \tag{4}
\end{equation*}
$$

Then $f \in M(q, \alpha)$, if the following condition is satisfied. That is,

$$
\left|\frac{\left\{J_{q}(\alpha, f)-1\right\}}{\left\{J_{q}(\alpha, f)+1\right\}}\right|<q
$$

When $q \rightarrow 1^{-}, M(q, \alpha)$ reduces to the class M_{α} of α-convex functions.
We note that $M(q, 0)=S T(q)$ and $M(q, 1)=C V(q)$.

2. Main Results

Theorem 2.1. Let $f \in M(q, \alpha), \alpha \geq 0$. Then $f \in S T(q)$.
Proof. The case $\alpha=0$ is trivial. We suppose $\alpha>0$. To prove that $f \in S T(q)$, we have to show that f satisfies condition (1), which is equivalent to

$$
\frac{z D_{q} f(z)}{f(z)} \prec \frac{1-q z}{1+q z}, q \in(0,1)
$$

Let

$$
\begin{equation*}
\frac{z D_{q} f(z)}{f(z)} \prec \frac{1-q w(z)}{1+q w(z)} \tag{5}
\end{equation*}
$$

Clearly $w(0)=0$ and $1+q w(z) \neq 0$. We shall show that $|z(z)|<1, \quad \forall z \in E$. We suppose on the contrary that there exists $z_{0}, z_{\circ} \in E$, such that $\left|w\left(z_{0}\right)\right|=1$. Then

$$
\begin{equation*}
J_{q}\left(\alpha, f\left(z_{0}\right)\right)=\frac{1-q w\left(z_{\circ}\right)}{1+q w\left(z_{0}\right)}-\frac{2 \alpha q m w\left(z_{0}\right)}{\left(1+q w\left(z_{0}\right)\right)\left(1-q w\left(z_{0}\right)\right)} \tag{6}
\end{equation*}
$$

where we have used (5) and q-analogue of the well known Jack's Lemma for which we refer to [1]. It is shown that if $w(z)$ is analytic in E with $w(0)=0$, then $|w(z)|$ attains its maximum value on the circle $|z|=r$ at a point $z_{o} \in E$ and in this case $z_{0} D_{q} w\left(z_{0}\right)=m w\left(z_{0}\right), \quad m \geq 1$.

Now, from (6)

$$
\left|\frac{J_{q}\left(\alpha, f\left(z_{0}\right)\right)-1}{J_{q}\left(\alpha, f\left(z_{0}\right)\right)+1}\right| \lesseqgtr q
$$

if

$$
\left|1+\alpha m-q w\left(z_{0}\right)\right|^{2} \lesseqgtr\left|1-(1+\alpha m) q w\left(z_{0}\right)\right|^{2}
$$

or

$$
\left(2 \alpha m+\alpha^{2} m^{2}\right)\left(1-q^{2}\right) \lesseqgtr 0 .
$$

Since α and m are positive and $q \in(0,1)$, so the last expression is positive. This leads to conclude that $f \notin M(q, \alpha)$, which is a contradiction. Thus, $|w(z)|<$ $1, \forall z \in E$. Hence $\frac{z D_{q} f(z)}{f(z)} \prec \frac{1-q z}{1+q z}$ and this completes the proof.
Theorem 2.2. For $0 \leq \beta<\alpha, M(q, \alpha) \subset M(q, \beta)$.
Proof. The case $\beta=0$ follows directly from Theorem 2.1. Therefore we suppose $\beta>0$ and $f \in M(q, \alpha)$. Then there exist $w_{1}(z), w_{2}(z)$ which are analytic in E with $w_{i}(0)=0$ and $\left|w_{i}(z)\right|<1$ for $i=1,2$ such that

$$
\frac{z D_{q} f(z)}{f(z)}=\frac{1-q w_{1}(z)}{1+q w_{1}(z)}=p_{1}(z) \prec \frac{1-q z}{1+q z} \quad \text { by Theorem } 2.1
$$

and

$$
J_{q}(\alpha, f(z))=\frac{1-q w_{2}(z)}{1+q w_{2}(z)}=p_{2}(z) \prec \frac{1-q z}{1+q z} .
$$

For $\beta<\alpha$, we can write

$$
\begin{aligned}
J_{q}(\beta, f(z)) & =\frac{\beta}{\alpha} J_{q}(\alpha, f(z))+\left(1-\frac{\beta}{\alpha}\right) \frac{z D_{q} f(z)}{f(z)} \\
& =\frac{\beta}{\alpha} p_{1}(z)+\left(1-\frac{\beta}{\alpha}\right) p_{2}(z)
\end{aligned}
$$

$$
=p(z)
$$

Using subordination principle, it follows that $p(z) \prec \frac{1-q z}{1+q z}$.
Therefore,

$$
J_{q}(\beta, f(z)) \prec \frac{1-q z}{1+q z}
$$

and this proves $f \in M(q, \beta)$ in E.
Corollary 2.3. For $\alpha \geq \frac{1}{q}, M(\alpha, q) \subset C V(q)$.
When $q \rightarrow 1^{-}$, we obtain the established result that α-convex functions are convex for $\alpha \geq 1$, see [5].

Remark 2.1. From Theorem 2.2, we have

$$
\begin{equation*}
M(q, \alpha) \subset M(q, \beta) \subset S T(q), 0 \leq \beta<\alpha \tag{7}
\end{equation*}
$$

In view of (7), it follows that, given a function in $S T(q)$, we can find the largest possible value of α such that $f \in M(q, \alpha), \quad \alpha \geq 0$.

We define the following.
Definition 2.4. Let $f \in S T(q)$ and

$$
\alpha=\alpha(f)=\text { l.u.b }\{\beta: f \in M(q, \beta), \beta \geq 0\} .
$$

Then we say that f is q-starlike of order q and type α and we write $f \in M^{*}(q, \alpha)$, where α is nonnegative and may be infinite.

If $f \in M^{*}(q, \alpha)$, then $f \in M(q, \beta)$ for all $\beta, \quad 0 \leq \beta \leq \alpha$.
That is

$$
J_{q}(\beta, f)=\frac{1-q w(z)}{1+q w(z)}, \quad 0 \leq \beta \leq \alpha
$$

where $w(z)$ is analytic in $E, w(0)=0$ and $|w(z)|<1$ in E. When $\beta \rightarrow \alpha$, $f \in M(q, \alpha)$.
Hence $f \in M^{*}(q, \alpha)$ for $\alpha<\infty$, if and only if,

$$
f \in M(q, \beta), \quad \text { for } \quad 0 \leq \beta \leq \alpha
$$

and $f \notin M(q, \beta)$ for $\beta>\alpha$. Thus, we write $S T(q)$ as a disjoint union

$$
S T(q)=\cup_{\alpha \geq 0} M^{*}(q, \alpha)
$$

Theorem 2.5. Let $f \in M^{*}(q, \alpha), \alpha>0$. For $0<\beta<\alpha$, choose the branch of $\left\{\frac{z D_{q} f(z)}{f(z)}\right\}^{\beta}$ which takes value 1 at the origin. Then $F_{\beta} \in S T(q)$, where

$$
\begin{equation*}
F_{\beta}(z)=f(z)\left\{\frac{z D_{q} f(z)}{f(z)}\right\}^{\beta} \tag{8}
\end{equation*}
$$

Proof. Let $f \in M^{*}(q, \alpha)$. This implies $f \in M(q, \beta)$ for all $\beta<\alpha$.
Now q-logarithmic differentiation of (8) yields

$$
\begin{aligned}
\frac{z D_{q} F_{\beta}(z)}{F_{\beta}(z)} & =\frac{z D_{q} f(z)}{f(z)}+\beta\left\{\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}-\frac{z D_{q} f(z)}{f(z)}\right\} \\
& =(1-\beta) \frac{z D_{q} f(z)}{f(z)}+\beta\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}\right) \\
& =J_{q}(\beta, f) \prec \frac{1-q z}{1+q z} .
\end{aligned}
$$

This implies $F_{\beta} \in S T(q)$, and the proof is complete.
Remark 2.2. If we denote by $B(q, \alpha)$ the subclass of q-Bazilevic functions f defined by

$$
f(z)=\left\{\alpha \int_{0}^{z}(F(t))^{\alpha} t^{-1} \mathrm{~d}_{q} t\right\}^{\frac{1}{\alpha}}
$$

where $F \in S T(q)$ for $\alpha>0$, then it can easily be seen that

$$
B\left(q, \frac{1}{\alpha}\right)=M(q, \alpha) .
$$

Theorem 2.6. Let $\frac{z D_{q} f(z)}{f(z)} \prec \frac{1}{1-q z}, g \in M(q, 0)$ and, for all $m \in \mathbb{N}=\{1,2,3, \ldots\}$, define

$$
\begin{equation*}
F_{m}(z)=\frac{[m+1]_{q}}{(g(z))^{m}} \int_{0}^{z} t^{m-1} f(t) \mathrm{d}_{q} t, \quad q>\frac{1}{2 m} \tag{9}
\end{equation*}
$$

Then

$$
\Re\left\{\frac{z D_{q} F_{m}(z)}{F_{m}(z)}\right\}>0 \quad \text { for } \quad|z|<\frac{1}{q}
$$

Proof. We can write (9) as

$$
\begin{align*}
{\left[F_{m}(z)\left(\frac{g(z)}{z}\right)^{m}\right] } & =\frac{[m+1]_{q}}{z^{m}} \int_{0}^{z} t^{m-1} f(t) \mathrm{d}_{q} t \\
& =E_{m}(z) \tag{10}
\end{align*}
$$

We note that right hand side of (10) represents q-Bernardi integral operator and it is shown in [?] that

$$
\begin{equation*}
\frac{z D_{q} E_{m}(z)}{E_{m}(z)} \prec \frac{1}{1-q z}, \tag{11}
\end{equation*}
$$

if f satisfies the given condition in E.
Now differentiating (10) q-logarithmically, and with some computation, we have

$$
\frac{z D_{q} F_{m}(z)}{F_{m}(z)}=-m\left[\frac{z D_{q} g(z)}{g(z)}-1\right]+\frac{z D_{q} E_{m}(z)}{E_{m}(z)}
$$

$$
\begin{equation*}
=-m h_{1}(z)+m+h_{2}(z), \tag{12}
\end{equation*}
$$

where

$$
\begin{aligned}
h_{1}(z) & =\frac{z D_{q} g(z)}{g(z)}, \\
h_{2}(z) & =\frac{z D_{q} E_{m}(z)}{E_{m}(z)} .
\end{aligned}
$$

Since $g \in M(q, 0)$, we have

$$
\begin{equation*}
\frac{1-q r}{1+q r} \leq\left|h_{1}(z)\right| \leq \frac{1+q r}{1-q r} \tag{13}
\end{equation*}
$$

Also, from (11), it follows that

$$
\begin{equation*}
\frac{1}{1+q r} \leq\left|h_{2}(z)\right| \leq \frac{1}{1-q r} \tag{14}
\end{equation*}
$$

Thus, using (13), (14), it follows from (12) that

$$
\begin{align*}
\Re\left\{\frac{z D_{q} F_{m}(z)}{F_{m}(z)}\right\} & \geq-m \frac{1+q r}{1-q r}+m+\frac{1}{1+q r} \\
& =\frac{-m(1+q r)^{2}+m\left(1-q^{2} r^{2}\right)+(1-q r)}{(1+q r)(1-q r)} \\
& =\frac{1+q(1-2 m) r-2 m q^{2} r^{2}}{(1+q r)(1-q r)} \\
& =\frac{T(r)}{(1+q r)(1-q r)}, \tag{15}
\end{align*}
$$

where

$$
T(r)=1-q(2 m-1) r-2 m q^{2} r^{2}
$$

Clealry

$$
T(0)=1>0, \quad T(1)=1-q(2 m-1)-2 m q^{2}<0, \quad \text { for } \quad q>\frac{1}{2 m}
$$

Thus $T(r)=0$ has a least positive root $r_{q}=\frac{1}{q}$ for which the right hand side of (15) is positive. This proves the required result.

As a special case, we note that, for $q \rightarrow 1^{-}, f \in S^{*}\left(\frac{1}{2}\right) ; g \in S^{*}$. Then F_{m} defined by (9) is starlike in E.

Acknowledgements

The authors would like to thank the Rector, COMSATS University Islamabad, Pakistan, for providing excellent research and academic environments.

References

1. K. Ademogullari and Y. Kahramaner, q-harmonic mappings for which analytic part is q-convex function, Nonlinear Anal. Diff. Eqns. 4(2016), 283-293.
2. M.H. Ismail, E. Merkes and D. styer, A generalization of starlike functions, Complex Var. Elliptic Eqns. 14(1990), 77-84.
3. F.H. Jackson, On q-functions and certain difference operators, Trans. Roy. Soc. Edinburgh 46(1909), 253-281.
4. F.H. Jackson, On q-definite integrals, Q. J. Math. 41(1910), 193-203.
5. S.S. Miller, P.T. Mocanu and M.O. Reade, All α-convex functions are starlike, Proc. Amer. Math. Soc. 37(1973), 553-554.
6. A. Muhammad and M. Darus, A generalized operator involving the q-hyperbolic functions, Mat. Vesnik 65(2013), 454-465.
7. K.I. Noor, On generalized q-close-to-convexity, Appl. Math. Inform. Sci. 11(5) (2017), 13831388
8. K.I. Noor, On generalized q-Bazilevic functions, J. Adv. Math. Stud. 10(2017), 418-424.
9. K.I. Noor and S. Riaz, Generalized q-starlike functions, Studia Sci. Hungar. 54(4)(2017), 509-522.
10. K.I. Noor, S. Riaz and M.A. Noor, On q-Bernardi integral opertaor, TWMS J. Pure Appl, Math. 8(1)(2017), 3-11.
11. K.I. Noor and M.A. Noor, Linear combinations of generalized q-starlike functions, Appl. Math. Info. Sci. 11(2017), 745-748.
12. S.K. Sahoo and N.L. Sharma, On a generalization of close-to-convex functions, arXiv: 1404.3268 [math. CV], 14 pp.
13. H.E.O. Ucar, Coefficeient inequality for q-starlike functions, Appl. Math. Comput. 276(2016), 122-126.

Prof. Dr. Khalida Inayat Noor is Eminent Professor at COMSATS University Islamabad, Pakistan. She obtained her PhD in Geometric Function Theory (Complex Analysis)from Wales University(Swansea), (UK). She has a vast experience of teaching and research at university levels in various countries including Iran, Pakistan, Saudi Arabia, Canada and United Arab Emirates. She was awarded HEC best research award in 2009 and CIIT Medal for innovation in 2009. She has been awarded by the President of Pakistan: Presidents Award for pride of performance on August 14, 2010 for her outstanding contributions in Mathematical Sciences. Her field of interest and specialization is Complex analysis, Geometric function theory, Functional and Convex analysis. She has been personally instrumental in establishing PhD/ MS programs at CIIT. Prof. Dr. Khalida Inayat Noor has supervised successfully more than $25 \mathrm{Ph} . \mathrm{D}$ students and $40 \mathrm{MS} / \mathrm{M}$. Phil students. She has published more than 580 research articles in reputed international journals of mathematical and engineering sciences.
Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan.
e-mail: khalidan@gmail.com
Rizwan S. Badar is a PhD scholar at COMSATS University Islamabad, Islamabad, Pakistan. He is doing his research work under the supervision of Prof. Dr. Khalida Inayat Noor. His field of interest is Geometric Function Theory.
Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan.
e-mail: rizwansbadar@gmail.com

[^0]: Received April 19, 2018. Revised June 27, 2018. Accepted July 2, 2018. *Corresponding author.
 (c) 2018 Korean SIGCAM and KSCAM.

