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A STUDY ON q-SPECIAL NUMBERS AND POLYNOMIALS

WITH q-EXPONENTIAL DISTRIBUTION†

JUNG YOOG KANG

Abstract. We introduce q-special numbers and polynomials with q-exponential

distribution. From these numbers and polynomials we derive some proper-
ties and identites. We also find approximated zeros of q-special polynomials

and investigate property of two parameters λ, q.
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1. Introduction

The exponential distribution is one of the widely used continuous distribu-
tions. It is often used to model the time elapsed between events(see [1,2,4,5,6,7]).

Definition 1.1. For λ > 0, the probability density function of an exponential
distribution is given by

fX(x) =

{
λe−λx if x > 0
0 if x ≤ 0,

where X is a continuous random variable which is said to have an exponential
distribution with parameter λ > 0. An interesting property of the exponential
distribution is that it can be viewed as a continuous analogue of the geometric
distribution. The most important property of the exponential distribution is
that it is memoryless, so we can state this formally as follows:

P (X > a+ b|X > a) = P (X > b), a, b ≥ 0.
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Properties 1.2. For λ > 0, an exponential distribution has

(i) (Mean) E(X) =
1

λ
,

(ii) (V ariance) V (X) =
1

λ2
,

(iii) (Moments) E(Xn) =
n!

λn
, for n = 1, 2, · · · ,

(iv) (Median) m(X) =
ln(2)

λ
< E(X).

where X is a continuous random variable which is said to have an exponential
distribution with parameter λ > 0.

Since the 1950s, many mathematicians have tried to find the properties of the
exponential distribution using various perspectives and methods(see [1-2,4-7])
and they have found some theorems relevant to life testing using an exponential
distribution. Nowadays, those who study life testing concentrate on the predic-
tion of future records(see [3,8,13]) and mathematicians have studied expanded
exponential function(see [1-15]).

Definition 1.2. The distribution function Fn(t) = P (Tn ≤ t),−∞ < t <∞,
of the q-Erlang distribution of the first kind, with parameters n, λ, and q, is
given by

Fn(t) = 1−
n−1∑
x=0

eq(−λt)
q(

x
2)(λt)x

[x]q!
, 0 < t <∞,

and Fn(t) = 0,∞ < t < 0, where n is a positive integer, 0 < λ < ∞, and
0 < q < 1. Its q-density function fn(t) = dqFn(t)/dqt is given by

fn(t) =
q(

n
2)λn

[n− 1]q!
tn−1eq(−λt), 0 < t <∞.

The q-density function and q-moments of the q-exponential distribution of the
first kind are deduced in the following definition of Definition 2.2.

Definition 1.3. The q-density function of the q-exponential distribution of
the first kind, with parameter λ and q, is given by

f(t) =
λ

eq−1(λt)
, 0 < t <∞,

where 0 < λ <∞ and 0 < q < 1. Also, its jth q-moment is given by

µ
′

j,q = E(T jq ) =
[j]q!

λjq(
j+1
2 )

, j = 1, 2, · · · .

Since an q-exponential distribution is very basic and important in the q-
distribution, we feel that we need to study q-special polynomials including this
distribution in detail. We hypothesized that q-special polynomials would have



A study on q-special numbers and polynomials with q-exponential distribution 543

some characteristic properties when we combine the q-probability denseity func-
tion which is related to the q-exponential distribution.

Based on this idea, the main concern of this paper is to define q-special
polynomials and study some of their formulae. Our paper is organised as follows:
in Section 2, we define q-special polynomials with q-distribution which is related
to the q-exponential distribution . From this definition, we investigate some
interesting identities of q-special polynomials and derive some relations.

2. Some properties of q-special polynomials with q-exponential
distribution

In this section, we define q-special numbers and polynomials with q-exponential
distribution. From these polynomials, we find some identities and obtain prop-
erties by using q-numbers. In addition, we will find some algebra properties of
q-exponential distribution when we choose λ > 0 and 0 < q < 1.

Definition 2.1. Let λ be a real number and |q| < 1. Then we define

∞∑
n=0

En.q(λ : x)
tn

[n]q!
=

λ

eq−1(λt)
eq(tx).

For x = 0 q-special numbers are defined by

∞∑
n=0

En.q(λ : 0)
tn

[n]q!
=

λ

eq−1(λt)
= λeq(−λt) =

∞∑
n=0

En.q(λ)
tn

[n]q!
.

For λ > 0 and and 0 < q < 1, we can note that q-special numbers are q-
exponential distribution. For two parameters x, y we define En.q(λ : x, y) as

∞∑
n=0

En.q(λ : x, y)
tn

[n]q!
=

λ

eq−1(λt)
eq(tx)eq(ty).

Theorem 2.2. For a real number λ, we have

(i) En.q(λ : x) =
n∑
k=0

[
n
k

]
q

Ek.q(λ)xn−k

(ii) En.q(λ : x, y) =
n∑
k=0

[
n
k

]
q

Ek.q(λ : x)yn−k.
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Proof. (i) From generating function of q-special polynomials we find

∞∑
n=0

En.q(λ : x)
tn

[n]q!
=

λ

eq−1(λt)
eq(tx)

=
∞∑
n=0

En.q(λ)
tn

[n]q!

∞∑
n=0

xn
tn

[n]q!

=
∞∑
n=0

(
n∑
k=0

[
n
k

]
q

Ek.q(λ)xn−k

)
tn

[n]q!
.

Comparing coefficients of the both sides, we obtain the required result.
(ii) We omit the proof of Theorem 2.2.(ii) since we can find it by the similiar
method.

�

Corollary 2.3. In commutative algebra, we have

En.q(λ : x, y) = En.q(λ : x+ y).

Theorem 2.4. Let λ be a real number and |q| < 1. Then we find

n∑
l=0

l∑
k=0

[
n
k

]
q

[
l
k

]
q

(−x)n−lλl−kq(
n−l
2 )+(l−k

2 )En.q(λ : x) =

{
λ if n = 0
0 if n 6= 0

.

Proof. From eq−1(λt) 6= 0 and eq(tx)eq−1(−tx) = 1, we can turn the generating
function of q-special polynomials with q-exponential distribution to

∞∑
n=0

En.q(λ : x)
tn

[n]q!
eq−1(λt)eq−1(−tx) = λ.

The left hand side on the above equation is changed to

∞∑
n=0

En.q(λ : x)
tn

[n]q!

∞∑
n=0

λnq(
n
2) tn

[n]q!

∞∑
n=0

(−x)nq(
n
2) tn

[n]q!

=
∞∑
n=0

[ ∞∑
k=0

[
n
k

]
q

Ek.q(λ : x)λn−kq(
n−k

2 )

]
tn

[n]q!

∞∑
n=0

[
(1− x)nq(

n
2)
] tn

[n]q!

=
∞∑
n=0

[
n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

(−x)n−lλl−kq(
n−l
2 )+(l−k

2 )Ek.q(λ : x)

]
tn

[n]q!
.

From coparison of coefficients on both sides, we obtain the required result.

�
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Corollary 2.5. From Theorem 2.4, we hold

n∑
k=0

[
n
k

]
q

λn−kq(
n−k

2 )En.q(λ) =

{
λ if n = 0
0 if n 6= 0

.

Theorem 2.6. For a real number λ, we derive

(i) (−1)n−1En.q(−λ : −x) = En.q(λ : x),

(ii)
n∑
l=0

[
n
l

]
q

λl
l∏
i=1

(1 + qi−1)En−l.q(λ : −x) = (−1)nEn.q(λ : x).

Proof. (i) putting t→ −t, x→ −x, and λ→ −λ we can transform the generating
function of q-special polynomials with q-exponential distribution as

∞∑
n=0

En.q(−λ : −x)
(−t)n

[n]q!
=

λ

eq−1(λt)
eq(tx) = −

∞∑
n=0

En.q(λ : x)
tn

[n]q!
.

Hence, we have

(−1)nEn.q(−λ : −x) = −En.q(λ : x).

(ii) Substituting −t,−x instead of t, x, respectively, on the generating function
of q-special polynomials we can find

∞∑
n=0

En.q(λ : −x)
(−t)n

[n]q!
=

eq−1(λt)

eq−1(−λt)
λ

eq−1(λt)
eq(tx).

We can transform the above equation as

∞∑
n=0

En.q(λ : −x)
(−t)n

[n]q!
eq−1(−λt)eq(−λt) =

∞∑
n=0

En.q(λ : x)
(t)n

[n]q!
.

The left hand side is transformed as
∞∑
n=0

(−1)nEn.q(λ : −x)
tn

[n]q!

∞∑
n=0

(−λ)nq(
n
2) tn

[n]q!

∞∑
n=0

(−1)nλn
tn

[n]q!

=
∞∑
n=0

((−1)nEn.q(λ : −x))
tn

[n]q!

∞∑
n=0

(−λ)n

(
n∑
k=0

[
n
k

]
q

q(
k
2)

)
tn

[n]q!

=
∞∑
n=0

((−1)nEn.q(λ : −x))
tn

[n]q!

∞∑
n=0

(
(−λ)n

n∏
i=1

(1 + qi−1)

)
tn

[n]q!

=
∞∑
n=0

(
n∑
l=0

[
n
l

]
q

(−1)nλl
l∏
i=1

(1 + qi−1)En−1.q(λ : −x)

)
tn

[n]q!
.

Therefore, we complete proof of the Theorem 2.6.

�
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Theorem 2.7. Let |q| < 1. Then we derive

(i) (−1)nλEn.q−1(x : λ) = xEn.q−1(λ : x)

(ii)

n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

λl−kq(
k
2)Ek.q−1(λ : x)xn−l

=

n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

λl−kq(
l−k
2 )+(n−l

2 )Ek.q(λ : x)xn−l.

Proof. (i) Setting q−1, −t instead of q, t, respectively, and x↔ λ, we get

∞∑
n=0

En.q−1(x : λ)
(−t)n

[n]q−1 !
=

x

eq(−tx)
eq−1(−λt)

=
x

λ

λ

eq(λt)
eq−1(tx)

=
x

λ

∞∑
n=0

En.q−1(λ : x)
tn

[n]q−1 !
.

Therefore, we have

(−1)nEn.q−1(x : λ) =
x

λ
En.q−1(λ : x).

The required relation now follows immediately.

(ii) Substituting q−1 instead of q, we lead to

∞∑
n=0

En.q−1(x : λ)
tn

[n]q−1 !
=

(
eq−1(tx)eq−1(λt)

eq(λt)eq(tx)

)
λ

eq−1(λt)
eq(tx).

We can turn the left hand side on above equation as

∞∑
n=0

En.q−1(x : λ)
tn

[n]q−1 !
eq(λt)eq(tx)

=

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

λn−kq(
k
2)Ek.q−1(λ : x)

)
tn

[n]q!

∞∑
n=0

xn
tn

[n]q!

=

∞∑
n=0

(
n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

λl−kq(
k
2)En.q−1(λ : x)xn−l

)
tn

[n]q!
,



A study on q-special numbers and polynomials with q-exponential distribution 547

and the right hand side is turn to

eq−1(tx)eq−1(λt)
∞∑
n=0

En.q(λ : x)
tn

[n]q!

=
∞∑
n=0

(
n∑
k=0

[
n
k

]
q

λn−kq(
n−k

2 )Ek.q(λ : x)

)
tn

[n]q!

∞∑
n=0

q(
n
2)xn

tn

[n]q!

=
∞∑
n=0

(
n∑
k=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

λl−kq(
l−k
2 )+(n−l

2 )Ek.q(λ : x)xn−l

)
tn

[n]q!
.

Comparing the coefficients ar once gives the required relation.

�

Corollary 2.8. From Theorem 2.7.(ii), we hold

E0.q−1(λ : x) = E0.q(λ : x).

Theorem 2.9. For a real number λ, we investigate

(i) xn =
n∑
k=0

[
n
k

]
q

λn−k−1q(
n−k

2 )Ek.q(λ : x)

(ii) q(
n
2)xn =

n∑
k=0

[
n
k

]
q

λn−k−1q(
n
2)En.q−1(λ : x)

(iii)
n∑
k=0

[
n
k

]
q

(−1)n−lλn−k+1xk = En.q(λ : x).

Proof. From the generating function of q-special polynomials, we have

n∑
k=0

En.q(λ : x)
tn

[n]q!
eq−1(λt) = λeq(tx).

We can turn the left hand side on the above equation to

n∑
k=0

En.q(λ : x)
tn

[n]q!

n∑
k=0

q(
n
2)λn

tn

[n]q!
=
∞∑
n=0

(
n∑
k=0

[
n
k

]
q

λn−kq(
n−k

2 )Ek.q(λ : x)

)
tn

[n]q!
,

and the right hand side is turn to

λeq(tx) = λ

∞∑
n=0

xn
tn

[n]q!
.

Hence, we obtain

λxn =
n∑
k=0

[
n
k

]
q

λn−kq(
n−k

2 )Ek.q(λ : x),
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and complete the proof of Theorem 2.9.(i).

(ii) Substituting q−1 instead of q on the generating function of q-special poly-
nomials, we can make

∞∑
n=0

En.q−1(λ : x)
tn

[n]q−1!
eq(λt) = λeq−1(tx).

We omit the proof of Theorem 2.9.(ii) because the required relation now follows
immediately by the same method of (i).

(iii) Using a property of q-numbers, eq(−λt)eq(λt) = 1, we get

∞∑
n=0

En.q(λ : x)
tn

[n]q!
= λeq(−λt)eq(tx)

=
∞∑
n=0

(
n∑
k=0

[
n
k

]
q

(−1)n−kλn−k+1xk

)
tn

[n]q!
.

The required relation now follows at once.

�

3. The observation of scattering zeros of the q-special polynomials

This section aims to find an approximate root of q-special polynomials. Using
the Mathematica program, the structure of the accumulation of the root in three-
dimensional space is verified and the characteristics of approximate roots due to
changes in q and a are discussed. For this, we use Theorem 2.9.(iii) to calculate
some elements of q-special numbers and polynomials. The first few q-special
numbers are

E0.q(λ) = λ,

E1.q(λ) = −λ(λ− 1),

E2.q(λ) = λ{1 + λ2 − λ(1 + q)},
E3.q(λ) = −λ(λ− 1){1 + λ2 − λq(1 + q)},
E4.q(λ) = λ{1 + λ4 − λ(1 + q + q2 + q3)− λ3(1 + q + q2 + q3)

+ λ2(1 + q + 2q2 + q3 + q4)},
E5.q(λ) = −λ{1 + λ5 − λ4(1 + q + q2 + q3 + q4) + λ3(1 + q2)(1 + q + q2 + q3 + q4)

− λ2(1 + q2)(1 + q + q2 + q3 + q4) + λ(1 + q + q2 + q3 + q4),

· · · ,
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and the first six q-special polynomials are:

E0.q(λ : x) = λ,

E1.q(λ : x) = −λ(λ− x),

E2.q(λ : x) = λ{λ2 − λ(1 + q)x+ x2},
E3.q(λ : x) = −λ(λ− x){λ2 − λq(1 + q)x+ x2},
E4.q(λ : x) = λ{λ4 − λ3(1 + q + q2 + q3)x+ λ2(1 + q + 2q2 + q3 + q4)x2

− λ(1 + q + q2 + q3)x3 + x4},
E5.q(λ : x) = −λ{λ5 − λ4(1 + q + q2 + q3 + q4)x+ λ3(1 + q2)(1 + q + q2 + q3 + q4)x2

− λ2(1 + q2)(1 + q + q2 + q3 + q4)x3 + λ(1 + q + q2 + q3 + q4)x4 + x5},
· · · .

Given that values of λ and q have 0.1, 0.5, and 0.9, respectively, the approx-
imate root of each of the q-special polynomials when n = 1, 2, 3, 4, and 5 can
be checked by the following table. Here, the results show that the value of the
real root out of the approximate root values was also increased as λ and q were
increased. In addition, this study found that only a single real root exists when
n = 2k + 1, k > 0. This phenomenon is a rather special phenomenon even if n
is increased.

n λ = q = 0.1 λ = q = 0.5 λ = q = 0.9

1 0.1 0.5 0.9
2 0.055 - 0.0835165i 0.375 - 0.330719i 0.855 - 0.281025i

0.055 + 0.0835165i 0.375 + 0.330719i 0.855 + 0.281025i
3 0.0055 - 0.0998486i 0.1875 - 0.463512i 0.7695 - 0.466765i

0.1 0.5 0.9
0.0055 + 0.0998486i 0.1875 + 0.463512i 0.7695 + 0.466765i

4 -0.0267108 - 0.0963667i 0.0264979 - 0.499297i 0.671574 - 0.599156i
-0.0267108 + 0.0963667i 0.0264979 + 0.499297i 0.671574 + 0.599156i
0.0822608 - 0.0568609i 0.442252 - 0.233266i 0.875976 - 0.206559i
0.0822608 + 0.0568609i 0.442252 + 0.233266i 0.875976 + 0.206559i

5 -0.0470215 - 0.0882552i -0.0971941 - 0.490462i 0.570816 - 0.695823i
-0.0470215 + 0.0882552i -0.0971941 + 0.490462i 0.570816 + 0.695823i

0.1 0.5 0.9
0.0525765 - 0.085063i 0.331569 - 0.374248i 0.821979 - 0.366539i
0.0525765 + 0.085063i 0.331569 + 0.374248i 0.821979 + 0.366539i

...
...

...
...

Let us assume that n = 100. The figure when λ and q are given as 0.1, 0.5,
and 0.9 can be found in Figure 1. In Figure 1, this study shows that the position
of the roots appears as a circle, which becomes larger as the radius increases.
In addition, as λ and q increase, the root is further away from the imaginary
number axis when the real number is negative. Here, this study can assume that
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λ and q affect the radius size and distancing from the imaginary number axis in
the negative real numbers, respectively.

Figure 1. Zeros of En.q(x) for q = λ = 0.1, q = λ = 0.5, q = λ = 0.9

Figure 2 shows a graph in which the value of λ changes (λ = 1, 10, and 100)
when n = 100. Here, the approximated root maintains a circle shape, and the
level of the gap where the negative real number and imaginary number axis come
into contact is not changed, but the radius is matched with the value of λ as 1
on the left, 10 in the middle, and 100 on the right.

Figure 2. Zeros of En.q(x) for λ = 1, λ = 10, λ = 100, and q = 0.1

The next table is configured using q = 0.1 while changing λ. It reveals the
approximate root value of the q-special polynomials given that λ = 1, 10, and
100. Here, when n is an odd number term, it has only a single real root and the
value is matched with λ.
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n λ = 1, q = 0.1 λ = 10, q = 0.1 λ = 100, q = 0.1

1 1 10 100
2 0.55 - 0.835165i 5.5 - 8.35165i 55 - 83.5165 i

0.55 + 0.835165i 5.5 + 8.35165i 55 + 83.5165 i
3 0.055 - 0.998486i 0.55 - 9.98486i 5.5 - 99.8486 i

1 10 100
0.055 + 0.998486i 0.55 + 9.98486i 5.5 + 99.8486 i

4 -0.267108 - 0.963667i -2.67108 - 9.63667i -26.7108 - 96.3667i
-0.267108 + 0.963667i -2.67108 + 9.63667i -26.7108 + 96.3667i
0.822608 - 0.568609i 8.22608 - 5.68609i 82.2608 - 56.8609i
0.822608 + 0.568609i 8.22608 + 5.68609i 82.2608 + 56.8609i

5 -0.470215 - 0.882552i -4.70215 - 8.82552i -47.0215 - 88.2552i
-0.470215 + 0.882552i -4.70215 + 8.82552i -47.0215 + 88.2552i

1 10 100
0.525765 - 0.85063i 5.25765 - 8.5063i 52.5765 - 85.063i
0.525765 + 0.85063i 5.25765 + 8.5063i 52.5765 + 85.063i

...
...

...
...

Conjecture 3.1. The value of λ in the q-special polynomials determines the
real number root and radius when n is an odd number.

Figure 3 shows a graph when changing q = 0.1, 0.5, and 0.9 while fixing λ = 10
given that n = 100. Here, a real number value does not exist in the negative
real number section, and the gap of the approximate root value becomes larger
when q increases.

Figure 3. Zeros of En.q(x) for q = 0.1, q = 0.5, q = 0.9, and λ = 10

The next table presents approximate roots when q = 0.1, 0.5, and 0.9 while
fixing λ = 10. Since λ is fixed to 10, it always has a value of 10 when a real root
exists.
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n λ = 10, q = 0.1 λ = 10, q = 0.5 λ = 10, q = 0.9

1 10 10 10
2 5.5 - 8.35165i 7.5 - 6.61438i 9.5 - 3.1225i

5.5 + 8.35165i 7.5 + 6.61438i 9.5 + 3.1225i
3 0.55 - 9.98486i 3.75 - 9.27025i 8.55 - 5.18628i

10 10 10
0.55 + 9.98486i 3.75 + 9.27025i 8.55 + 5.18628i

4 -2.67108 - 9.63667i 0.529958 - 9.98595i 7.46194 - 6.65729i
-2.67108 + 9.63667i 0.529958 + 9.98595i 7.46194 + 6.65729
8.22608 - 5.68609i 8.84504 - 4.66532i 9.73306 - 2.29509i
8.22608 + 5.68609i 8.84504 + 4.66532i 9.73306 + 2.29509i

5 -4.70215 - 8.82552i -1.94388 - 9.80925i 6.3424 - 7.73136i
-4.70215 + 8.82552i -1.94388 + 9.80925i 6.3424 + 7.73136i

10 10 10
5.25765 - 8.5063i 6.63138 - 7.48497i 9.1331 - 4.07265i
5.25765 + 8.5063i 6.63138 + 7.48497i 9.1331 + 4.07265i

6 -6.02349 - 7.98233i -3.78131 - 9.25752i 5.23912 - 8.51772i
-6.02349 + 7.98233i -3.78131 + 9.25752i 5.23912 + 8.51772i
2.51625 - 9.67825i 4.29942 - 9.02856i 8.36729 - 5.47617i
2.51625 + 9.67825i 4.29942 + 9.02856i 8.36729 + 5.47617i
9.06279 - 4.2268i 9.32564 - 3.61004i 9.82154 - 1.8808i
9.06279 + 4.2268i 9.32564 + 3.61004i 9.82154 + 1.8808i

...
...

...
...

Conjecture 3.2. The value of q in the q-special polynomials determines the
degree of the gap of the approximated root in the negative real number section.

4. Conclusions

Two variables, λ and q, in the q-special polynomials determine the distribution
of the approximated roots. This study verifies the special rule when n is an odd
number. That is, the value of λ determines the location of the approximated
root, and q represents the degree of the gap in the negative real number section.
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