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A RESEARCH ON THE GENERALIZED POLY-BERNOULLI

POLYNOMIALS WITH VARIABLE a†

N.S. JUNG AND C.S. RYOO∗

Abstract. In this paper, by using the polylogarithm function, we intro-

duce a generalized poly-Bernoulli numbers and polynomials with variable
a. We find several combinatorial identities and properties of the polynomi-
als. We give some properties that is connected with the Stirling numbers
of second kind. Symmetric properties can be proved by new configured

special functions. We display the zeros of the generalized poly-Bernoulli
polynomials with variable a and investigate their structure.
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1. Introduction

Recently, one of the researchers’ interests in many fields is the applications of
Bernoulli numbers and polynomials. Many researchers have studied Bernoulli
numbers and polynomials and focus on expansion and generalization of theirs.
Specially, it is being studied actively about poly-Bernoulli numbers and polyno-
mials is concerned with polylogarithm function(cf. [1-9]).

In this paper, we use the following notations. N = {1, 2, 3, . . . } denotes the
set of natural numbers, Z+ denotes the set of nonnegative integers, Z denotes
the set of integers, and C denotes the set of complex numbers, respectively. The
classical Bernoulli polynomials Bn(x) are given by the generating function

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
, (cf. [1, 2, 3, 4, 5]). (1.1)

When x = 0, B
(k)
n,q = B

(k)
n,q(0) are called poly-Bernoulli numbers.
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Definition 1.1. For a ∈ C \ {0}, we define a generalized Bernoulli polynomials
Bn(x; a) with variable a by the following generating function

t

eat − 1
ext =

∞∑
n=0

Bn(x; a)
tn

n!
, |t| < 2π

|a|
. (1.2)

When a = 1, it is equal to the classical Bernoulli polynomials. The polyloga-
rithm function Lik(x) is defined by

Lik(x) =

∞∑
n=1

xn

nk
, (k ∈ Z), (cf. [1, 2, 3, 5, 7, 8, 9, 12]). (1.3)

For some k, the polylogarithm functions Lik(x) are as follows:

Li1(x) = −log(1− x), Li0(x) =
x

1− x
,

Li−1(x) =
x

(1− x)
2 , Li−2(x) =

x2 + x

(1− x)
3 , . . . .

For n ∈ Z+, k ∈ Z, the poly-Bernoulli polynomials is defined by

Lik(1− e−t)

et − 1
ext =

∞∑
n=0

B(k)
n (x)

tn

n!
, (1.4)

where

Lik(x) =

∞∑
n=1

xn

nk

is k-th polylogarithm function(cf. [1, 2, 3, 4, 5, 7, 12]). When k = 1, Li1(x) =
−log(1−x) and Li1(1−e−t) = t. Using the result of polylogarithm function, we
deduce that the poly Bernoulli polynomials is identical to the Bernoulli polyno-
mials when k = 1.

The classical Stirling numbers of the second kind S2(n,m) are defined by the
relations

xn =

n∑
m=0

S2(n,m)(x)m,

where (x)n = x(x− 1)(x− 2) · · · (x− n+ 1) is falling factorial.
The Stirling numbers of the second kind is defined by

∞∑
n=m

S2(n,m)
tn

n!
=

(et − 1)m

m!
, (cf. [4, 6, 9, 10, 11]). (1.5)

In this paper, we introduce a generalized poly-Bernoulli numbers and polynomi-
als with variable a. The properties of the Bernoulli polynomials with parameters
were studied in [5, 8]. We construct a generalized poly-Bernoulli polynomials
with variable a and give some relations between the generalized poly-Bernoulli
polynomials and the classical Bernoulli polynomials. We also investigate sev-
eral identities that are connected with the Stirling numbers of the second kind.



A research on the generalized poly-Bernoulli polynomials with variable a 477

Furthermore, we find some symmetric identities by using special functions and
power sum polynomials.

2. Generalized poly-Bernoulli polynomials with variable a

In this section, we introduce a generalized poly-Bernoulli numbers B
(k)
n (a)

and polynomials B
(k)
n (x; a) with variable a by the generating functions. We give

some identities of the polynomials, and find a relation that is connected with
classical Bernoulli polynomials.

Definition 2.1. For n ∈ Z+ and k ∈ Z, the generalized poly-Bernoulli polyno-

mials B
(k)
n (x; a) with variable a are defined by means of the following generating

function
Lik(1− e−t)

eat − 1
ext =

∞∑
n=0

B(k)
n (x; a)

tn

n!
(2.1)

where

Lik(t) =
∞∑
n=1

tn

nk

is the k-th polylogarithm function. When x = 0, B
(k)
n (a) = B

(k)
n (0; a) are called

the generalized poly-Bernoulli numbers with variable a. When the condition al-
low a = 1, it is trivial that the generalized poly-Bernoulli polynomials is reduced
to poly-Bernoulli polynomials.

From (2.1), we have a relation between the generalized poly-Bernoulli numbers
and polynomials.

Theorem 2.2. Let n,m be a nonnegative integers and k ∈ Z. We have

B(k)
n (mx; a) =

n∑
l=0

(
n

l

)
(m− 1)n−1B

(k)
l (x; a)xn−l. (2.2)

Proof. For n,m ∈ Z+, k ∈ Z, we get

∞∑
n=0

B(k)
n (mx; a)

tn

n!
=

∞∑
n=0

(
n∑
l=0

(
n

l

)
B

(k)
l (x; a)(m− 1)n−1xn−l

)
tn

n!
.

Therefore, we obtain above result. �

Corollary 2.3. Let m > 0, n ≥ 0, k ∈ Z. We get

B(k)
n (mx; a) =

n∑
l=0

(
n

l

)
mn−lB

(k)
l (a)xn−l.

When m = 1, it is satisfies

B(k)
n (x; a) =

n∑
l=0

(
n

l

)
B

(k)
l (a)xn−l.
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If x is replaced x+ y in Corollary 2.3, we get the next addition theorem.

Theorem 2.4. For n ∈ Z+ and k ∈ Z, we have

B(k)
n (x+ y; a) =

n∑
l=0

(
n

l

)
B

(k)
l (x; a)yn−l.

Proof. Let n ∈ Z+, k ∈ Z. Then we get

∞∑
n=0

B(k)
n (x+ y; a)

tn

n!
=
Lik(1− e−t)

eat − 1
e(x+y)t

=
∞∑
n=0

(
n∑
l=0

(
n

l

)
B

(k)
l (x; a)yn−l

)
tn

n!
.

Thus, we get the explicit result. �

Theorem 2.5. For n ∈ Z+ and k ∈ Z, we derive

B(k)
n (x+ 1; a)−B(k)

n (x; a) =
n−1∑
l=0

(
n

l

)
B

(k)
l (x; a).

Proof. Let n ∈ Z+, k ∈ Z. From (2.1), we have

∞∑
n=0

B(k)
n (x+ 1; a)

tn

n!
−

∞∑
n=0

B(k)
n (x; a)

tn

n!

=
Lik(1− e−t)

eat − 1
ext(et − 1)

=

∞∑
n=0

n−1∑
l=0

(
n

l

)
B

(k)
l (x; a)

tn

n!
.

Comparing the coefficient on both sides, we obtain the desired result. �

By using the binomials series and the definition of polylogarithm function, we
derive the result as below.

Theorem 2.6. For n ∈ Z+ and k ∈ Z, we have

B(k)
n (x; a) =

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)r+1(x− r + al − am)n

(m+ 1)n
.
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Proof. Let n ∈ Z+, k ∈ Z. From (1.3), we obtain

Lik(1− e−t)

eat − 1
ext =

(
(−1)

∞∑
m=0

emat

)( ∞∑
l=0

(1− e−t)l+1

(l + 1)k

)
ext

= (−1)

∞∑
l=0

l∑
m=0

e(l−m)at (1− e−t)m+1

(m+ 1)k
ext

=

( ∞∑
l=0

l∑
m=0

(−1)
e(l−m)at

(m+ 1)k

)(
m+1∑
r=0

(
m+ 1

r

)
(−1)re(x−r)t

)

=
∞∑
n=0

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)r+1(x− r + al − am)n

(m+ 1)k
tn

n!

Therefore, we get

B(k)
n (x; a) =

∞∑
l=0

l∑
m=0

m+1∑
r=0

(
m+ 1

r

)
(−1)r+1(x− r + al − am)n

(m+ 1)k
.

�

Similarly, we find next result that is related with the generalized Bernoulli
polynomials with variable a.

Theorem 2.7. Let n ∈ Z+ and k ∈ Z. Then we have

B(k)
n (x; a) =

∞∑
l=0

1

(l + 1)k

l+1∑
r=0

(
l + 1

r

)
(−1)r

Bn+1(x− r; a)

n+ 1
.

Proof. For n ∈ Z+ and k ∈ Z, we have

Lik(1− e−t)

eat − 1
ext =

∞∑
l=1

(1− e−t)l

lk
ext

eat − 1

=
∞∑
n=0

1

(l + 1)k

l+1∑
r=0

(
l + 1

r

)
(−1)r

e(x−r)t

eat − 1

=

∞∑
n=0

( ∞∑
l=0

1

(l + 1)k

l+1∑
r=0

(
l + 1

r

)
(−1)r

Bn+1(x− r; a)

n+ 1

)
tn

n!
.

So, we easily get

B(k)
n (x; a) =

∞∑
l=0

1

(l + 1)k

l+1∑
r=0

(
l + 1

r

)
(−1)r

Bn+1(x− r; a)

n+ 1
.

�
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3. Relations with the Stirling numbers of the second kind

In this section, by using the generationg function of the Stirling numbers of
the second kind, we derive some interesting relations that is associated with the
generalized poly-Bernoulli polynomials with variable a. Recall that the Stirling
numbers of the second kind are given by

(et − 1)m

m!
=

∞∑
n=m

S2(n,m)
tn

n!
.

By the definitions of the polylogarithm function Lik(x) and the Stirling numbers
of the second kind, we get the following result.

Lik(1− e−t) =

∞∑
l=1

(1− e−t)l

lk

=
∞∑
n=1

n∑
l=1

(−1)l+n

lk
l!S2(n, l)

tn

n!

(3.1)

From the Equation (3.1), we have the next theorem which is connected with the
Stirling numbers.

Theorem 3.1. For n ∈ Z+, k ∈ Z, we get

B(k)
n (x; a) =

n∑
r=0

(
n

r

) r+1∑
l=1

(−1)l+r+1l!S2(r + 1, l)

lk(r + 1)
Bn−r(x; a).

Proof. Let n ∈ Z+, k ∈ Z. By the definition of polylogarithm function, the
Equation (3.1) is recomposed as follows,

Lik(1− e−t)

t
=

∞∑
n=0

n+1∑
l=1

(−1)l+n+1

lk
l!
S2(n+ 1, l)

n+ 1

tn

n!
. (3.2)

By using the Equation (3.2), the generalized poly Bernoulli polynomialsB
(k)
n (x; a)

is indicated with the Stirling numbers and the generalized Bernoulli polynomials
with variable a. By Equation (3.2) and Definition 1.1, we have

∞∑
n=0

B(k)
n (x; a)

tn

n!
=
Lik(1− e−t)

eat − 1
ext

=

∞∑
n=0

(
n+1∑
l=1

(−1)l+n+1

lk
l!
S2(n+ 1, l)

n+ 1

)
tn

n!

∞∑
n=0

Bn(x; a)
tn

n!

=
∞∑
n=0

n∑
r=0

(
n

r

) r+1∑
l=1

(−1)l+r+1l!S2(r + 1, l)

lk(r + 1)
Bn−r(x; a)

tn

n!
.

By comparing the coefficients of tn

n! on both sides, the proof of Theorem 3.1 is
now complete. �



A research on the generalized poly-Bernoulli polynomials with variable a 481

Theorem 3.2. Let n ∈ Z+ and k ∈ Z. From the Equation (2.1), we get

B(k)
n (x; a) =

∞∑
m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−a(a),

where (x)l = x(x− 1)(x− 2) · · · (x− l + 1) is falling factorial.

Proof. For n ∈ Z+ and k ∈ Z, the generalized poly-Bernoulli numbers and
polynomials can be indicated by the formula that is concerned with the Stirling
numbers. By Equation (1.5) and (2.1), we obtain

∞∑
n=0

B(k)
n (x; a)

tn

n!
=
Lik(1− e−t)

eat − 1
((et − 1) + 1)x

=
Lik(1− e−t)

eat − 1

∞∑
l=0

(x)l
(et − 1)l

l!

=

∞∑
n=0

B(k)
n (a)

tn

n!

∞∑
l=0

(x)l

∞∑
r=l

S2(r, l)
tr

r!

=

∞∑
n=0

( ∞∑
m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−m(a)

)
tn

n!
.

Comparing the coefficient on both sides, we get

B(k)
n (x; a) =

∞∑
m=0

m∑
l=0

(
n

m

)
(x)lS2(m, l)B

(k)
n−m(a).

�

From Definition 2.1 and Equation (3.2), we have the recurrence formula that
is another one with the result of Theorem 2.5.

Theorem 3.3. For n ≥ 1, k ∈ Z, we get

B(k)
n (x+ a; a)−B(k)

n (x; a)

=
n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)l+1+r

(l + 1)k
(l + 1)!S2(r, l + 1)

)
xn−r.
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Proof. Let n ≥ 1, k ∈ Z. Using the Definition 2.1, we have

∞∑
n=0

B(k)
n (x+ a; a)

tn

n!
−

∞∑
n=0

B(k)
n (x; a)

tn

n!

=
Lik(1− e−t)

eat − 1
e(x+a)t − Lik(1− e−t)

eat − 1
ext

=

∞∑
n=0

n−1∑
l=0

(−1)n+l+1

(l + 1)k
(l + 1)!S2(n, l + 1)

tn

n!

∞∑
m=0

xm
tm

m!

=

∞∑
n=0

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)r+l+1

(l + 1)k
(l + 1)!S2(r, l + 1)

)
xn−r

tn

n!
.

Hence, the recurrence formula is indicated by

B(k)
n (x+ a; a)−B(k)

n (x; a)

=

n∑
r=1

(
n

r

)(r−1∑
l=0

(−1)r+l+1

(l + 1)k
(l + 1)!S2(r, l + 1)

)
xn−r.

�

4. Symmetric properties of the generalized poly-Bernoulli
polynomials involving special functions

In this section, we consider several special functions and investigate some
symmetric properties of the generalized poly-Bernoulli polynomials with variable
a.

Theorem 4.1. Let n ∈ Z+, k ∈ Z, m1,m2 > 0 and m1 ̸= m2. Then we obtain

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
n−r(m2x; a)B

(k)
r (m1x; a)

=
n∑
r=0

(
n

r

)
mr

1m
n−r
2 B(k)

r (m2x; a)B
(k)
n−r(m1x; a).

Proof. For n ∈ Z+, k ∈ Z and m1,m2 > 0(m1 ̸= m2), we consider a special
function as follows

F (t) =
Lik(1− e−m1t)Lik(1− e−m2t)

(eam1t − 1)(eam2t − 1)
e2m1m2xt. (4.1)



A research on the generalized poly-Bernoulli polynomials with variable a 483

The Equation (4.1) is appeared by

F (t) =
Lik(1− e−m1t)

(eam1t − 1)
em1m2xt

Lik(1− e−m2t)

(eam2t − 1)
em1m2xt

=

∞∑
n=0

B(k)
n (m2x; a)

(m1t)
n

n!

∞∑
r=0

B(k)
r (m1x; a)

(m2t)
r

r!

=

∞∑
n=0

n∑
r=0

(
n

r

)
mn−r

1 mr
2B

(k)
r (m1x; a)B

(k)
n−r(m2x; a)

tn

n!
.

(4.2)

Similarly, we can see that

F (t) =

∞∑
n=0

n∑
r=0

(
n

r

)
mr

1m
n−r
2 B

(k)
n−r(m1x; a)B

(k)
r (m2x; a)

tn

n!
. (4.3)

Comparing the coefficient of Equation (4.2) and (4.3), it is clear to Theorem
4.1. �

Note that S̃k(m) =
∑m
i=1 i

k is a power sum polynomials(cf [4, 6, 11]). The
exponential generating function of the power sum polynomials are expressed by

e(m+1)t − 1

et − 1
=

∞∑
m=0

S̃k(m)
tk

k!
. (4.4)

Using the Equation (4.4), we have the symmetric identity of the generalized
poly-Bernoulli polynomials.

Theorem 4.2. Let n ∈ Z+, k ∈ Z, m1,m2 > 0 and m1 ̸= m2. Then we get

Lik(1− e−m2t)
n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r (m2x; a)S̃n−r(m1 − 1)

= Lik(1− e−m1t)
n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r (m1x; a)S̃n−r(m2 − 1)

Proof. Let n ∈ Z+ , m1,m2 > 0 and m1 ̸= m2. If we start a special function
that is given below

F (t) =
Lik(1− e−m1t)Lik(1− e−m2t)(em1m2t − 1)(eam1m2xt)

(eam1t − 1)(eam2t − 1)

= Lik(1− e−m2t)
∞∑
n=0

B(k)
n (m2x; a)

(m1t)
n

n!

∞∑
r=0

S̃r(m1 − 1)
(am2t)

r

r!

=

∞∑
n=0

Lik(1− e−m2t)

n∑
r=0

(
n

r

)
an−rmr

1m
n−r
2 B(k)

r (m2x; a)S̃n−r(m1 − 1)
tn

n!
.
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In analogous method, we get

F (t) = Lik(1− e−m1t)
∞∑
n=0

B(k)
n (m1x)

(m2t)
n

n!

∞∑
r=0

S̃r(m2 − 1)
(am1t)

r

r!

=
∞∑
n=0

Lik(1− e−m1t)
n∑
r=0

(
n

r

)
an−rmn−r

1 mr
2B

(k)
r (m1x; a)S̃n−r(m2 − 1)

tn

n!
.

Comparing the coefficient of both sides, then it gives the symmetric identity. �

Theorem 4.3. For n ∈ Z+, k ∈ Z and m1,m2 > 0 (m1 ̸= m2), we have

n∑
r=0

(
n

r

)
an−rmn−r

1 mr−1
2 Br(m1x)S̃n−r(m2 − 1)

=

n∑
r=0

(
n

r

)
an−rmr−1

1 mn−r
2 Br(m2x)S̃n−r(m1 − 1).

Proof. Let n ∈ Z+, k ∈ Z and m1,m2 > 0 (m1 ̸= m2). Then we consider the
generating function as follows

F (t) =
Lik(1− e−m1t)Lik(1− e−m2t)(eam1m2t − 1)(eam1m2xt)t

(eam1t − 1)
2
(eam2t − 1)

2 .

From the generating function F (t) and the Equation (4.4), we get

F (t) =
Lik(1− e−m1t)Lik(1− e−m2t)(eam1m2t − 1)(eam1m2xt)t

(eam1t − 1)
2
(eam2t − 1)

2

=
∞∑
n=0

B(k)
n (a)

(m1t)
n

n!

∞∑
n=0

B(k)
n (a)

(m2t)
n

n!

×
∞∑
r=0

S̃r(m2 − 1)
(am1t)

r

r!
a−1m−1

2

∞∑
n=0

Bn(m1x)
(am2t)

n

n!

=

∞∑
n=0

B(k)
n (a)

(m1t)
n

n!

∞∑
n=0

B(k)
n (a)

(m2t)
n

n!

×
∞∑
n=0

n∑
r=0

(
n

r

)
an−1mn−r

1 mr−1
2 Br(m1x)S̃n−r(m2 − 1)

tn

n!
.

In similar method, F (t) is expressed by

F (t) =
∞∑
n=0

B(k)
n (a)

(m1t)
n

n!

∞∑
n=0

B(k)
n (a)

(m2t)
n

n!

×
∞∑
n=0

n∑
r=0

(
n

r

)
an−1mn−r

2 mr−1
1 Br(m2x)S̃n−r(m1 − 1)

tn

n!
.
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Comparing the coefficient of t
n

n! , we find the symmetric identity:

n∑
r=0

(
n

r

)
an−lmn−r

1 mr−1
2 Br(m1x)S̃n−r(m2 − 1)

=

n∑
r=0

(
n

r

)
an−lmr−1

1 mn−l
2 Br(m2x)S̃n−r(m1 − 1).

�

5. Distribution of zeros of the generalized poly-Bernoulli
polynomials

In this section, we discover new interesting pattern of the zeros of the gener-

alized poly-Bernoulli polynomials B
(k)
n (x; a). We propose some conjectures by

numerical experiments. The generalized poly-Bernoulli polynomials B
(k)
n (x; a)

can be determined explicitly. A few of them are

B
(k)
0 (x; a) =

1

a
,

B
(k)
1 (x; a) = −1

2
− 1

2a
+

2−k

a
+
x

a
,

B
(k)
2 (x; a) =

1

2
− 2−k +

1

3a
− 21−k

a
+

2 · 3−k

a
+
a

6
− x− x

a
+

21−kx

a
+
x2

a
,

B
(k)
3 (x; a) = −1

2
+ 3 · 2−k − 31−k − 1

4a
+

3 · 21−2k

a
+

7 · 2−1−k

a
− 32−k

a
− a

4

+ 2−1−ka+
3x

2
− 3 · 2−kx+

x

a
− 3 · 21−kx

a
+

2 · 31−kx
a

+
ax

2

− 3x2

2
− 3x2

2a
+

3 · 2−kx2

a
+
x3

a
.

We investigate the beautiful zeros of the generalized poly-Bernoulli polyno-

mials B
(k)
n (x; a) by using a computer. We plot the zeros of the generalized poly-

Bernoulli polynomials B
(k)
n (x; a) for n = 40, k = −4,−2, 2, 4 and x ∈ C(Figure

1). In Figure 1(top-left), we choose n = 30, k = −4 and a = 3. In Figure 1(top-
right), we choose n = 30, k = −2 and a = 3. In Figure 1(bottom-left), we choose
n = 30, k = 2 and a = 3. In Figure 1(bottom-right), we choose n = 30, k = 4

and a = 3. Stacks of zeros of B
(k)
n (x : a) for 1 ≤ n ≤ 40 from a 3-D structure are

presented(Figure 2). In Figure 2(left), we choose k = −2 and a = 3. In Figure
2(middle), we choose k = 2 and a = 3. Our numerical results for approximate

solutions of real zeros of B
(k)
n (x; a) are displayed(Tables 1, 2).



486 N.S. Jung, C.S. Ryoo

-400 -300 -200 -100 0

-10

-5

0

5

10

Re(x)

Im(x)

-400 -300 -200 -100 0

-10

-5

0

5

10

Re(x)

Im(x)

-20 -10 0 10 20

-20

-10

0

10

20

Re(x)

Im(x)

-20 -10 0 10 20

-20

-10

0

10

20

Re(x)

Im(x)

Figure 1. Zeros of B
(k)
n (x; a)

Table 1. Numbers of real and complex zeros of B
(k)
n (x; a)

k = −2 k = 2
degree n real zeros complex zeros real zeros complex zeros

1 1 0 1 0
2 2 0 2 0
3 3 0 3 0
4 4 0 4 0
5 5 0 5 0
6 4 2 2 4
7 3 4 3 4
8 4 4 4 4
9 5 4 5 4
10 6 4 6 4
11 7 4 7 4
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Figure 2. Stacks of zeros of B
(k)
n (x; a) for 1 ≤ n ≤ 40

The plot of real zeros of B
(k)
n (x; a) for 1 ≤ n ≤ 40 structure are presented(Figure

3). In Figure 3(left), we choose k = −2 and a = 3. In Figure 3(right), we choose

Figure 3. Real zeros of B
(k)
n (x; a) for 1 ≤ n ≤ 40

k = 2 and a = 3. We observe a remarkable regular structure of the complex roots

of the generalized poly-Bernoulli polynomials B
(k)
n (x; a). We also hope to verify

a remarkable regular structure of the complex roots of the generalized poly-

Bernoulli polynomials B
(k)
n (x; a)(Table 1). Next, we calculated an approximate

solution satisfying generalized poly-Bernoulli polynomials B
(k)
n (x; a) = 0 for x ∈
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R. The results are given in Table 2 and Table 3.

Table 2. Approximate solutions of B
(k)
n (x; a) = 0, k = −2

degree n x

1 −2.0000

2 −3.6330, −0.36701

3 −5.1474, −1.1814, 0.32887

4 −6.6236, −1.8091, −0.40059, 0.83330

5 −8.0847, −2.2649, −1.1655, 0.34794, 1.1671

6 −9.5387, −2.5133, −1.9368, −0.40717

Table 3. Approximate solutions of B
(k)
n (x; a) = 0, k = 2

degree n x

1 1.7500

2 0.87997, 2.6200

3 0.24078, 1.7546, 3.2546

4 −0.23924, 0.97561, 2.5369, 3.7267

5 −0.56980, 0.25952, 1.7568, 3.2627, 4.0408

6 0.99983, 2.5157

By numerical computations, we will make a series of the following conjectures:

Conjecture 4.1. Prove that B
(1)
n (x; a), x ∈ C, has Re(x) = a

2 and Im(x) = 0

reflection symmetry analytic complex functions. However, B
(k)
n (x; a), k ≠ 1, has

not Re(x) = a
2 reflection symmetry for a ∈ R.

Using computers, many more values of n have been checked. It still remains
unknown if the conjecture fails or holds for any value n(see Figures 1, 2, 3). We

are able to decide if B
(k)
n (x; a) = 0 has n distinct solutions(see Tables 1, 2, 3).

Conjecture 4.2. Prove that B
(k)
n (x; a) = 0 has n distinct solutions.

The authors expect that investigations along these directions will lead to a new
approach employing numerical method in the research field of the generalized

poly-Bernoulli polynomials B
(k)
n (x; a) which appear in applied mathematics and

mathematical physics.
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