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ON A SPLITTING PRECONDITIONER FOR SADDLE POINT

PROBLEMS†

DAVOD KHOJASTEH SALKUYEH∗, MARYAM ABDOLMALEKI, SAEED KARIMI

Abstract. Cao et al. in (Numer. Linear. Algebra Appl. 18 (2011)

875-895) proposed a splitting method for saddle point problems which un-
conditionally converges to the solution of the system. It was shown that

a Krylov subspace method like GMRES in conjunction with the induced

preconditioner is very effective for the saddle point problems. In this paper
we first modify the iterative method, discuss its convergence properties and

apply the induced preconditioner to the problem. Numerical experiments

of the corresponding preconditioner are compared to the primitive one to
show the superiority of our method.
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1. Introduction

We consider the large and sparse saddle point problems of the form

Au ≡
(

A BT

−B 0

)(
x
y

)
=

(
f
−g

)
≡ b, (1)

where A ∈ Rn×n is symmetric positive definite (SPD) and B ∈ Rm×n with
m 6 n, is of full rank. In addition, x, f ∈ Rn and y, g ∈ Rm. It is not difficult
to prove that under the above conditions the matrix A is nonsingular and as
a result the system (1) has a unique solution (see [9, Lemma 1.1]). Systems of
the form (1) arise in many applications, such as constrained optimization, finite
diffrence and mixed finite element discretization of the Navier-stokes equations
(see [8, 11, 16]).
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Recent years, several iterative methods (stationary and nonstationary) have
been proposed to solve (1) in the literature. Among them, although the sta-
tionary iterative methods are not too effective to be competitive with Krylov-
subspace methods like GMRES [21], they serves efficient preconditioners for the
system (1). Bai et al. in [4], proposed the Hermitian and skew-Hermitian split-
ting (HSS) method for solving non-Hermitian positive definite linear systems.
Convergence of the HSS method for the saddle point problems was investigated
by Benzi and Golub in [9]. As they mentioned the method is typically too
slow to be competitive and for this reason they used the induced preconditioner
(HSS preconditioner) to accelerate the convergence of a nonsymmetric Krylov
subspace method like GMRES, or its restarted version GMRES(`) [21]. Several
variants of the HSS preconditioner as well as their relaxed versions have been
presented up to now (for example see [1, 2, 6, 7, 24]). Bai et al. in [5] proposed
the shift-splitting method to solve non-Hermitian positive definite. Cao et al. in
[12], using the idea of [5], proposed the shift-splitting preconditioner for the sad-
dle point problems. Several extensions and improvements have been presented
for diffrent types of saddle point problems (see [12, 15, 25]). When (1, 1)-block
A is ill-conditioned or even singular, the augmented Lagrangian method can
be employed [8, 18]. In fact, the saddle point system (1) is replaced by the
equivalent system(

A+ γBTB BT

−B 0

)(
x
y

)
=

(
f + γBT g
−g

)
, (2)

where γ > 0. As was mentioned in [8], by taking

γ =
‖A‖2
‖B‖22

, (3)

the condition number of both the (1, 1)-block and of the coefficient matrix in (2)
are approximately minimized.

In [3], Bai and Wang studied the parameterized inexact Uzawa method (PIU)
for solving the saddle point problem (1). Then Chen and Jiang generalized
the PIU (GPIU) method for solving the same problem [14]. In [13], Cao et al.
studied a special case of the GPIU method and proposed the following stationary
iterative method(

A+ tBTB 0
−2B 1

t I

)(
x(k+1)

y(k+1)

)
=

(
tBTB −BT
−B 1

t I

)(
x(k)

y(k)

)
+

(
f
−g

)
,

(4)
where t > 0. This method can be written as (hereafter we call it GPIU1)

u(k+1) = Γtu
(k+1) + ct, (5)

where

Γt =

(
A+ tBTB 0
−2B 1

t I

)−1(
tBTB −BT
−B 1

t I

)
,
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and

ct =

(
A+ tBTB 0
−2B 1

t I

)−1(
f
−g

)
.

In [13], it was proved that for every t > 0 it holds that

ρ(Γt) =
1

1 + tσ2
m

< 1, (6)

where σm is the smallest nonzero singular value of the matrix BA−
1
2 and ρ(.)

stands for the spectral radius of the matrix. It means that the iterative method
(5) unconditionally converges to the solution of (1) for every initial guess. As
usual, the matrix

Pt =

(
A+ tBTB 0
−2B 1

t I

)
,

for every t > 0, can be used as a preconditioner for the saddle point problem
(1). Numerical results presented in [13] show that the GMRES method or its
restarted version, GMRES(`) [21], is very efficient to solve the preconditioned
system

P−1
t Au = P−1

t b.

It was proved that the preconditioned matrix P−1
t A has an eigenvalue 1 with

multiplicity n and the remaining eigenvalues are equal to

tσ2
i

1 + tσ2
i

, 1 6 i 6 m,

where σis are the positive singular values of the matrix BA−
1
2 .

From (6), we see that ρ(Γt) → 0 as t tends to infinity. As mentioned in
[8, 13], for large values of t the block A+ tBTB becomes severely ill-conditioned.
On the other hand, the (2, 2)-block in Pt is equal to (1/t)I, which in this case,
approaches to zero and will affect the numerical results when Pt is used as a
preconditioner. Therefore, for large values of t the matrix Pt would be near to
singular. In fact, small values of t affect the convergence of the outer iteration
and large values of t make the preconditioned matrix ill-conditioned. Therefore,
choosing t so as to minimize the spectral radius of the iteration matrix is not
necessarily the best choice, which also holds when the induced preconditioner
is utilized to accelerate a Krylov subspace iterative method. Hence, in general
finding a good value for t is difficult. In order to improve the efficiency of the
method a modification of the stationary iterative method (7) is presented and its
convergence properties is studied. We also verify the properties of the induced
preconditioner.

This paper is organized as follows. Section 2 is devoted to presenting a mod-
ification of the GPIU1 iterative method, its convergence properties and the cor-
responding preconditioner. In Section 3, we present a strategy for selecting the
parameters of proposed method. In Section 4, practical implementation of the
extracted preconditioner are presented. Numerical experiments are presented
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in Section 5 to examine the effectiveness of the proposed method. Finally, the
paper is ended by some concluding remarks in Section 6.

2. Modification of the method

We propose the following stationary iteration method(
A+ ηθBTB 0
−(1 + θ)B 1

η I

)(
x(k+1)

y(k+1)

)
=

(
ηθBTB −BT
−θB 1

η I

)(
x(k)

y(k)

)
+

(
f
−g

)
,

(7)
for solving the system (1), where η, θ > 0. This splitting leads to the following
stationary iterative method (hereafter we denote it by GPIU2)

u(k+1) = Υη,θu
(k) + dη,θ, (8)

where

Υη,θ =

(
A+ ηθBTB 0
−(1 + θ)B 1

η I

)−1(
ηθBTB −BT
−θB 1

η I

)
and

dη,θ =

(
A+ ηθBTB 0
−(1 + θ)B 1

η I

)−1(
f
−g

)
.

Obviously, for θ = 1 the GPIU2 method coincides with GPIU1. The next
theorem verifies the convergence of the method.

Theorem 2.1. Let A ∈ Rn×n be symmetric positive definite and B ∈ Rm×n

be of full rank. Then Υη,θ has an eigenvalue 0 of multiplicity n, i.e. µ
(1)
i = 0,

i = 1, 2, . . . , n, and remaining other m eigenvalues are of the form

µ
(2)
i = 1− ησ2

i

1 + ηθσ2
i

, i = 1, 2, . . . ,m, (9)

where σ1 > σ2 > · · · > σm, are the nonzero singular values of BA−
1
2 . Moreover,

ρ(Υη,θ) < 1 provided that η > 0 and

θ > max{0, 1

2
− 1

ησ1
2
}.

Proof. The proof of this theorem is similar to that of Theorem 3.1 in [13]. There-
fore, we present a sketch of the proof. It is not difficult to show that

Υη,θ =

 ηθS−1BTB −S−1BT

η2θ(1 + θ)BS−1BTB − ηθB I − η(1 + θ)BS−1BT

 ,

wherein S = A+ ηθBTB. We set Υ̃η,θ = F0Υη,θF
−1
0 where

F0 =

(
A

1
2 0

0 I

)
.



On a splitting preconditioner for saddle point problems 463

Let BA−
1
2 = UT [Σ 0]V be the singular value decomposition of BA−

1
2 , where U

and V are orthogonal matrices and Σ = diag(σ1, σ2, . . . , σm). It can be shown
that

Υ̃η,θ =

(
V 0
0 U

)T
Υ̂s,t

(
V 0
0 U

)
,

where

Υ̂η,θ =

 ηθ(I + ηθΣ2)−1Σ2 0 −(I + ηθΣ2)−1Σ

0 0 0

η2θ(1 + θ)Σ(I + ηθΣ2)−1Σ2 − ηθΣ 0 I − η(1 + θ)Σ(I + ηθΣ2)−1Σ


= F1

 ηθ(I + ηθΣ2)−1Σ2 0 −(I + ηθΣ2)−1Σ2

0 0 0

η2θ(1 + θ)(I + ηθΣ2)−1Σ2 − ηθI 0 I − η(1 + θ)(I + ηθΣ2)−1Σ2

F−1
1

= F1Ῡη,θF
−1
1 ,

in which

F1 =

 I 0 0
0 I 0
0 0 Σ

 .

Therefore, we deduce that the matrices Υη,θ and Ῡη,θ are similar. Hence, all
we need is to compute the eigenvalues of Ῡη,θ. Since the nonzero blocks of this
matrix are diagonal, we only need to compute the eigenvalues of the matrices

Hη,θ(σi) =

 ηθ(1 + ηθσ2
i )−1σ2

i −(1 + ηθσ2
i )−1σ2

i

η2θ(1 + θ)(1 + ηθσ2
i )−1σ2

i − ηθ 1− η(1 + θ)(1 + ηθσ2
i )−1σ2

i


=

σ2
i

1 + ηθσ2
i

 ηθ −1

ηθ(η − 1

σ2
i

)
1

σ2
i

− η

 ,

for i = 1, 2, . . . ,m. It is straightforward to see that the eigenvalues of Hη,θ(σi)
are µ

(1)
i = 0 and

µ
(2)
i = 1− ησ2

i

1 + ηθσ2
i

, i = 1, 2, . . . ,m. (10)

Summarizing the above results we conclude that the matrix Υη,θ has an eigen-
value 0 of multiplicity n and the remaining m eigenvalues are of the form (10).

Now, for η > 0 it is easy to see that |µ(2)
i | < 1 if and only if

θ >
1

2
− 1

ησ2
i

.

Therefore, if η > 0 and θ > max{0, 1/2− 1/(ησ2
1)}, then ρ(Υη,θ) < 1. �

Remark 2.1. Let A be symmetric positive definite and B be of full rank. For
every η > 0 and θ > 1/2, from Theorem 2.1 it follows that ρ(Υη,θ) < 1.
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In general, convergence of the stationary iterative methods like (8) are typi-
cally too slow for the method to be competitive. However, the iterative method
(8) serves the preconditioner

Qη,θ =

(
A+ ηθBTB 0
−(1 + θ)B 1

η I

)
,

for the system Au = b and the preconditioned system Q−1
η,θAu = Q−1

η,θb (or

AQ−1
η,θv = b with u = Q−1

η,θv) can be solved by a Krylov subspace method like
GMRES or its restarted version. It is noted that the eigenvalue distribution of
matrices AQ−1

η,θ and Q−1
η,θA are the same. In contrast to the GIPU1 method,

we can independently choose the coefficient of the matrices BTB in (1, 1)-block
and I in (2, 2)-block. In fact, two parameters η and θ are chosen so that they
balance the coefficient of these matrices in the preconditioner Qη,θ.

Setting Rη,θ = Qη,θ −A, we have A = Qη,θ −Rη,θ. Therefore,

Q−1
η,θA = I −Q−1

η,θRη,θ = I −Υη,θ.

This shows that the eigenvalues of Q−1
η,θA are of the form µ = 1 − λ, where

λ ∈ σ(Υη,θ), in which σ(.) stands for the spectrum of the matrix. Hence, from

(9) we conclude that the preconditioned matrix Q−1
η,θA has eigenvalue 1 with

multiplicity n and the remaining eigenvalues are

λ
(2)
i =

ησ2
i

1 + ηθσ2
i

, i = 1, 2, . . . ,m. (11)

3. Selection of the parameters

As we see the scalar coefficient of the matrix BTB in (1, 1)-block of the GPIU1
and GPIU2 preconditioners are t and ηθ, respectively. In the implementation of
these preconditioners we need to solve systems of form

(A+ δBTB)z = r, (12)

where δ = t and δ = ηθ in the GPIU1 and the GPIU2 preconditioners, respec-
tively. For large problems these systems are solved by the CG method or its
preconditioned version, PCG. As already mentioned, the value

δ∗ =
‖A‖2
‖B‖22

,

is a good choice for δ. Therefore, in the GPIU1 preconditioner we set t = δ∗.
In the GPIU2 preconditioner we set ηθ = δ∗ and compute the values of η and
θ such that the spectral radius of the GPIU2 iteration matrix is minimized. In
fact, using this strategy not only the iteration counts for solving the system (12)
is approximately minimized but also the outer iteration of the method is also
improved.
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From Eq. (9), we see that if we set ηθ = δ∗, then the nonzero eigenvalues of
the GPIU2 iteration matrix would be of the form

µ
(2)
i = 1− ησ2

i

1 + δ∗σ2
i

, i = 1, 2, . . . ,m. (13)

Now all we need is to seek the parameter η∗ such that

η∗ = argmin
η

max
σi

∣∣∣∣1− ησ2
i

1 + δ∗σ2
i

∣∣∣∣ . (14)

In fact for fixed ηθ = δ∗ the value η∗ makes the spectral radius of the GPIU2
iteration matrix minimized. In other words, from Eq. (11), we see that the value
η∗ is chosen such a way that the eigenvalues of the preconditioned matrix Q−1

η,θA
are well-clustered around the point (1, 0). The following theorem gives the value
of η∗.

Theorem 3.1. Let the conditions of Theorem 2.1 hold and Υη,θ be the iteration
matrix of GPIU2 iterative method. If ηθ = δ∗ be a positive constant, then
the optimal iteration parameters η∗ and θ∗ of the GPIU2 iteration method that
minimize the spectral radius ρ(Υη,θ) are given by

η∗ =
2(1 + δ∗σ2

1)(1 + δ∗σ2
m)

σ2
1(1 + δ∗σ2

m) + σ2
m(1 + δ∗σ2

1)
and θ∗ =

δ∗

η∗
, (15)

wherein σ1 and σm are the largest and smallest singular values of BA−
1
2 , re-

spectively. Moreover, the corresponding optimal spectral radius is given by

ρ(Υη∗,θ∗) =
1− k
1 + k

< 1, (16)

where

k =
σ2
m(1 + δ∗σ2

1)

σ2
1(1 + δ∗σ2

m)
.

Proof. For the sake of the simplicity, let

ωi =
σ2
i

1 + δ∗σ2
i

, i = 1, 2, . . . ,m. (17)

It is easy to see that ω1 > ω2 > · · · > ωm > 0. Hence,

max
σi

∣∣∣∣1− η σ2
i

1 + δ∗σ2
i

∣∣∣∣ = max {|1− ηω1| , |1− ηωm|} .

Hence, from Eq. (14) we deduce that

η∗ = argmin
η

max {|1− ηω1| , |1− ηωm|} . (18)

From the latter equation it is not difficult to see that the optimal value of the η
satisfies

1− η∗ω1 = − (1− η∗ωm) .
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Hence,

η∗ =
2

ω1 + ωm
.

Substituting ω1 and ωm from Eq. (17) in the latter equation, the first relation
in (15) is obtained. The second relation in (15) follows from η∗θ∗ = δ∗. Finally,
we have

ρ(Υη∗,θ∗) =

∣∣∣∣1− η∗ σ2
1

1 + t∗σ2
1

∣∣∣∣ =

∣∣∣∣1− η∗ σ2
1

1 + η∗θ∗σ2
1

∣∣∣∣ ,
which proves Eq. (16). �

From Theorem 3.1 we see that for computing the values of η∗ and θ∗ we need
to compute the largest and smallest singular values of BA−

1
2 which is impractical

for large problems. In the sequel, we compare the spectral radius of the GPIU1
and GPIU2 iteration matrices for arbitrary choices of η and θ. Let δ = ηθ be
a positive constant and η > 0. As we mentioned, for θ = 1 the GPIU2 method
coincides with GPIU1, i.e., ρ(Υη,1) = ρ(Γt). According to Theorem 3.1, we have

ρ(Υη,θ) =
σ1

2(1 + δσm
2)− σm2(1 + δσ1

2)

σ1
2(1 + δσm2) + σm2(1 + δσ1

2)
.

It is not difficult to prove the following remark.

Remark 3.1. (i) If 0.5 6 θ < 1, then ρ(Υη,θ) < ρ(Γt) = ρ(Υη,1).
(ii) If θ > 1, then ρ(Υη,1) < ρ(Υη,θ).
(iii) If 0 < θ < 0.5 then the superiority of the GPIU2 method to GPIU1 can
not be deduced theoretically. However, the numerical results show that GPIU2
outperforms the GPIU1 method for the values η∗ and θ∗ defined in Theorem
3.1.

4. Practical implementation

In the section of the numerical experiments we solve the system Au = b by
the preconditioned GMRES(`) in conjunction with preconditioner Qη,θ. We use

right preconditioning. It is noted that the eigenvalues of Q−1
η,θA and AQ−1

η,θ are

the same. Indeed, we apply the GMRES(`) method for solving the precondi-
tioned system AQ−1

η,θv = b with u = Q−1
η,θv . We use a zero vector as an initial

guess and the stopping criterion

Rk =
‖r(k)‖2
‖r(0)‖2

< tol, (19)

where r(k) = b−Au(k) (u(k) is the computed solution) and r(0) = b−Au(0). The
maximum number of restarts is set to maxrest. In each restart of the method,
we need to compute an orthonormal basis for a Krylov subspace and during this
process we need to compute some vectors of the form (z1; z2) = Q−1

η,θ(r1; r2),
where r1 ∈ Rm and r2 ∈ Rn. To do so, it is enough to solve the system
Qη,θ(z1; z2) = (r1; r2) for (z1; z2) and this can be done by the following algorithm.
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Algorithm 1. Computation of (z1; z2) = Q−1
η,θ(r1; r2).

(1) Solve (A+ ηθBTB)z1 = r1 by the CG method

(2) Compute z2 = η(r2 + (1 + θ)Bz1)

In solving the system (A + ηθBTB)z1 = r1 by the CG method, the initial
guess is set to be a zero vector and the iteration is terminated as soon as

‖r1 − (A+ ηθBTB)z
(k)
1 ‖2

‖r1‖2
< tolin,

or the number of the iterations exceeds “maxitin”. Since, for θ = 1 the GPIU2
reduces to the GPIU1 method, the same strategy is used in the implementation
of the GPIU1 method.

To compute the value of δ∗ we use normest(A,0.001) and normest(B,0.001)

commands of Matlab, respectively, for estimating ‖A‖2 and ‖B‖2. Also, from
(15), for computing η∗ we need to compute the smallest and the largest singular

value of BA−
1
2 . To do so, we need to compute the extreme eigenvalues of

the matrix A−
1
2BTBA−

1
2 which is similar to A−1BTB. Therefore, since their

eigenvalues are the same we compute the largest and smallest eigenvalues of
the matrix A−1BTB and their square root give the extreme singular values of
BA−

1
2 .

5. Numerical Experiments

We present some numerical experiments to compare the effectiveness of the
GPIU1 and the GPIU2 preconditioners. All the numerical experiments were
computed in double precision using some Matlab codes on a Laptop with Intel
Core i5 CPU 2.40 GHz, 8GB RAM. In all experiments, the right-hand side
vector b is set to b = Au∗ where u∗ is a vector of all ones. According to the
implementation method described in Section 4, we always set

tol = 10−9, maxrest = 10000, tolin = 10−6, and maxitin = 200,

unless it is mentioned. Numerical results are presented in the tables. In the
tables, “Iters” and “CPU” stand for the number of iterations and the CPU
time (in seconds) for the convergence of the methods, respectively. Also, the
values of Rk and Ek are presented where Rk was defined in (19) and Ek =
‖u(k)−u∗‖∞. Moreover, we use the gmres function of Matlab with restart = 5.
Let “It = (i1, i2)” be the number of restarts returned by the GMRES method.
In this case, the value of Iters presented in the table are computed via Iters =
restart× (i1 − 1) + i2.
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Example 5.1. We consider the Stokes problem
−ν4u +∇p = f , in Ω,

div u = g, in Ω,
u = 0, on ∂Ω,∫

Ω

pdx = 0,

(20)

where Ω = (−1, 1) × (−1, 1), ∂Ω is the boundary of the domain Ω, 4 is the
componentwise Laplace operator, u is a vector-valued function representing the
velocity, p is a scalar function representing the pressure and ν > 0 the viscosity
constant. By discretizing with the upwind scheme, we obtain the saddle point
problem (1) in which (see [13])

A =

[
I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

]
∈ R2q2×2q2 ,

BT =

[
I ⊗ F
F ⊗ I

]
∈ R2q2×q2 ,

where

T =
ν

h2
· tridiag(−1, 2,−1) ∈ Rq×q,

F =
1

h
· tridiag(−1, 1, 0) ∈ Rq×q.

Here ⊗ denotes the Kronecker product and h = 1/(q + 1). In this case n = 2q2

and m = q2. We set ν = 0.001 and the numerical results are given for q =
16, 32, 64. In Table 1 we present the values of n, m, η∗, θ∗ and t∗ for Example
5.1.

Numerical results are presented in Table 2. As we observe both of the GPIU1
and GPIU2 preconditioners are effective in reducing the number of iterations
and CPU timing. However, we see that the GPIU2 preconditioner outperforms
the GPIU1 preconditioner from both the iteration counts and the CPU time.

Figure 1 displays the eigenvalue distribution of the matrices P−1
t∗ A andQ−1

η∗,θ∗A.

As we observe the eigenvalues of Q−1
η∗,θ∗A are more clustered around (1, 0) than

the matrix P−1
t∗ A. From the theoretical results presented in the previous section

we saw that the eigenvalues of these matrices are all real. However, from Figure
1, we see that the imaginary part of some the eigenvalues are not zero. This is
due to roundoff errors in the computational process.

Example 5.2. Consider the ossen problem which is obtained from the lin-
earization of the following steady−state Navier−Stokes equation by the Picard
iteration with suitable boundary condition on ∂Ω (see [19]) −ν∆u + (w.∇)u +∇p = f, in Ω,

divu = 0, in Ω,
u = g, on ∂Ω,

(21)
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Table 1. n, m, η∗, θ∗ and t∗ for Example 5.1

q
GPIU2 Preconditioner GPIU1 Preconditioner

n m η∗ θ∗ t∗

16 512 256 0.003 0.293 0.001
32 2048 1024 0.004 0.277 0.001
64 8192 4096 0.004 0.266 0.001

Table 2. Numerical results of GMRES(5) without precondi-
tioning and with the GPIU1 and the GPIU2 preconditioners
for Example 5.1

q GPIU2 preconditioner GPIU1 preconditioner GMRES(5)

16

Iters 24 25 15195
CPU 0.14 0.20 1.62
Rk 8.01× 10−10 1.42× 10−10 1.00× 10−9

Ek 1.54× 10−9 3.69× 10−10 1.71× 10−7

32

Iters 25 28 26650
CPU 0.43 0.56 7.39
Rk 5.93× 10−10 9.67× 10−10 1.00× 10−9

Ek 2.09× 10−9 4.77× 10−9 1.90× 10−7

64

Iters 29 44 49524
CPU 2.46 3.92 37.71
Rk 6.25× 10−10 5.20× 10−10 1.00× 10−9

Ek 3.84× 10−9 3.27× 10−9 1.66× 10−7
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Figure 1. Eigenvalue distribution of the matrices P−1
t∗ A (left)

and Q−1
η∗,θ∗A (right) for Example 5.1 with q = 16
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Table 3. n, m, η∗, θ∗ and t∗ for Example 5.2

q
GPIU2 Preconditioner GPIU1 Preconditioner

n m η∗ θ∗ t∗

16 578 189 77.228 0.468 36.145
32 2178 765 322.085 0.449 144.495
64 8450 3069 2079.109 0.477 991.889

where ν > 0, ∆, ∇, div, u, and p stand for the Laplace operator, the gradient
operator, the divergence, the velocity and pressure of the fluid, respectively.
Here the vector field w is the approximation of u from the previous Picard
iteration. Many approximation schemes can be applied to discretize the Oseen
problem (21) leading to a saddle point system of type (1). We consider a leaky
two-dimensional lid-driven cavity problem discretized by Q2-P1 finite element
on uniform grids on the unit square. The test problem was generated by using
the IFISS software package written by Elman et al. [17]. We use the viscosity
value ν = 1 to generate linear systems corresponding to 16 × 16, 32 × 32 and
64× 64 meshes. The values of n, m, η∗, θ∗ and t∗ for Example 5.2 are presented
in Table 3.

Numerical results are presented in Table 4. As seen, in all cases the GPIU2
preconditioner behave better than the GPIU1 preconditioner from both of itera-
tions and CPU time point of view. The cause of such performance is predictable
by considering the way of choosing the parameters of GPIU2. It should be
mentioned that for q = 32 and q = 64 the GMRES(5) method without precon-
ditioning fails to converge in 10000 restarts.

Figure 5.2 shows the eigenvalue distribution of the matrices P−1
t∗ A andQ−1

η∗,θ∗A.

From this figure we see that the eigenvalues ofQ−1
η∗,θ∗A are more clustered around

(1, 0) than the matrix P−1
t∗ A.

According to the Remark 3.1, we expect that the GPIU2 outperforms GPIU1
for θ ∈ [0.5, 1). To corroborate this matter numerically we consider the probems
of Examples 5.1 and 5.2 with q = 128. Here, we have n = 32768 and m =
16384. In Example 5.2 the number inner iterations is set to be 1000. We use
δ = ‖A‖2/‖B‖22 and compute η = δ/θ with various values of θ in the interval
[0.5, 1) . Numerical results of Flexible version of GMRES(5) (see [22, 23]) in
conjunction with the GPIU1 and GPIU2 preconditioners are shown in Table 5.
As we see, in all the cases, the GPIU2 preconditioner has provided quite suitable
results and this results are in good agreement with what we claimed in Remark
3.1.

6. Conclusion

Wang and Bai [3] proposed the parameterized inexact Uzawa method (PIU)
for solving the saddle point problems. Then a modification of the PIU method



On a splitting preconditioner for saddle point problems 471

Table 4. Numerical results of GMRES(5) without precondi-
tioning and with the GPIU1 and the GPIU2 preconditioners
for Example 5.2

q GPIU2 preconditioner GPIU1 preconditioner GMRES(5)

16

Iters 41 45 13361
CPU 0.23 0.32 1.50
Rk 5.37× 10−10 7.34× 10−10 1.00× 10−9

Ek 7.55× 10−7 1.23× 10−6 8.14× 10−6

32

Iters 30 34 †
CPU 0.58 0.76 -
Rk 9.87× 10−10 8.33× 10−10 -
Ek 1.67× 10−5 3.28× 10−5 -

64

Iters 45 75 †
CPU 5.69 10.03 -
Rk 6.02× 10−10 8.26× 10−10 -
Ek 5.97× 10−5 3.73× 10−4 -
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Figure 2. Eigenvalue distribution of the matrices P−1
t∗ A (left)

and Q−1
η∗,θ∗A (right) for Example 5.2 with q = 16

say (GPIU) was presented for solving the same problem [14]. Cao et al. in
[13] studied a special case of the GPIU method and showed that the induced
preconditioner is a very efficient. We have presented a modification of the GPIU1
method say GPIU2 and investigated its convergence properties. We proved
that the proposed method is always convergent under some mild conditions.
Corresponding to any parameter t∗ of the GPIU1, we have presented a strategy
to choose the parameters of the GPIU2 preconditioner. We have examined the
GPIU1 and the GPIU2 preconditioners to accelerate the converge speed of the
GMRES(`) or its Flexible version. The presented numerical experiments show
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Table 5. Numerical results of Flexible GMRES(5) with the
GPIU1 and GPIU2 preconditioners for the Examples 5.1 and
5.2 for q = 128

Example 5.1

GPIU2

θ η Iters CPU Rk Ek

0.5 0.0020 50 6.75 6.17× 10−10 1.95× 10−6

0.6 0.0017 54 7.88 9.36× 10−10 2.95× 10−6

0.7 0.0015 66 9.57 8.64× 10−10 2.73× 10−6

0.8 0.0013 80 10.82 5.09× 10−10 1.61× 10−6

0.9 0.0011 82 11.03 8.16× 10−10 2.57× 10−6

GPIU1

t Iters CPU Rk Ek

0.0010 101 14.88 7.05× 10−10 2.22× 10−6

Example 5.2

GPIU2

θ η Iters CPU Rk Ek

0.5 7945.5212 60 35.20 3.71× 10−10 2.09× 10−8

0.6 6621.2676 50 30.40 8.36× 10−10 4.70× 10−8

0.7 5675.3723 51 29.89 9.38× 10−10 5.28× 10−8

0.8 4965.9507 60 36.41 7.12× 10−10 4.01× 10−8

0.9 4414.1784 87 54.13 9.26× 10−10 5.21× 10−8

GPIU1

t Iters CPU Rk Ek

3972.7606 97 62.09 9.43× 10−10 5.30× 10−8

that the GPIU2 preconditioner outperforms the GPIU1 preconditioner for the
presented test examples.
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