
J. Appl. Math. & Informatics Vol. 36(2018), No. 5 - 6, pp. 447 - 458
https://doi.org/10.14317/jami.2018.447

UNIQUENESS OF CERTAIN TYPES OF DIFFERENCE

POLYNOMIALS†

CHAO MENG∗ AND LIANG ZHAO

Abstract. In this paper, we investigate the uniqueness problems of certain

types of difference polynomials sharing a small function. The results of the
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[Tbilisi Math. J. 11(2018), 1-13], P. Sahoo and B. Saha [App. Math.
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1. Introduction and main results

By a meromorphic function we shall always mean a meromorphic function in
the complex plane. Let k be a positive integer or infinity and a ∈ C ∪ {∞}.
Set E(a, f) = {z : f(z) − a = 0}, where a zero point with multiplicity k is
counted k times in the set. If these zeros points are only counted once, then
we denote the set by E(a, f). Let f and g be two nonconstant meromorphic
functions. If E(a, f) = E(a, g), then we say that f and g share the value a
CM; if E(a, f) = E(a, g), then we say that f and g share the value a IM. We
denote by Ek)(a, f) the set of all a-points of f with multiplicities not exceeding
k, where an a-point is counted according to its multiplicity. Also we denote by
Ek)(a, f) the set of distinct a-points of f with multiplicities not greater than k.
We denote by Nk)(r, 1/(f − a)) the counting function for zeros of f − a with

multiplicity less than or equal to k, and by Nk)(r, 1/(f − a)) the corresponding
one for which multiplicity is not counted. Let N(k(r, 1/(f − a)) be the counting

function for zeros of f − a with multiplicity at least k and N (k(r, 1/(f − a))
the corresponding one for which multiplicity is not counted. It is assumed that
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the reader is familiar with the notations of Nevanlinna theory such as T (r, f),
m(r, f), N(r, f), N(r, f), S(r, f) and so on, that can be found, for instance, in
[7][26].

Around 2001, I Lahiri introduced the notion of weighted sharing, which mea-
sures how close a shared value is to being shared CM or to being shared IM.
The definition is as follows.

Definition 1.1. [10] For a complex number a ∈ C∪{∞}, we denote by Ek(a, f)
the set of all a-points of f where an a-point with mutiplicity m is counted m
times if m ≤ k and k + 1 times if m > k. For a complex number a ∈ C ∪ {∞},
such that Ek(a, f) = Ek(a, g), then we say that f and g share the value a with
weight k.

The definition implies that if f , g share a value a with weight k, then z0 is a
zero of f − a with multiplicity m(≤ k) if and only if it is a zero of g − a with
multiplicity m(≤ k) and z0 is a zero of f−a with multiplicity m(> k) if and only
if it is a zero of g− a with multiplicity n(> k), where m is not necessarily equal
to n. We write f , g share (a, k) to mean that f , g share the value a with weight
k. Clearly if f , g share (a, k) then f , g share (a, p) for all integer p, 0 ≤ p < k.
Also we note that f , g share a value a IM or CM if and only if f , g share (a, 0)
or (a,∞) respectively.

A lot of research works on entire and meromorphic funct ions whose differ-
ential polynomials share certain value or fixed points have been done by many
mathematicians(see[1][2][3][4][6][11][12][13][14][15][16][17][18][19][21][22][25]). Re-
cently, uniqueness problem in difference analogue has became a subject of great
interest among the complex analysis researchers. In 2006, R.G. Halburd and
R.J. Korhonen [8] established a version of Nevanlinna theory based on differ-
ence operators. They also gave the difference logarithmic derivative lemma [9].
With this development many researchers paid their attention to the uniqueness
of different types of difference polynomials. In 2010, Zhang proved the following
result.

Theorem 1.2. [27] Let f and g be two transcendental entire functions of finite
order, and α(z) be a small function with respect to both f and g. Suppose that c
is a non-zero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+c)
and gn(z)(g(z)− 1)g(z + c) share α(z) CM, then f ≡ g.

In 2014, Meng improved the above result with the notion of weakly weighted
sharing and proved the following theorem.

Theorem 1.3. [20] Let f and g be two transcendental entire functions of finite
order, and α(z) be a small function with respect to both f and g. Suppose that c
is a non-zero complex constant and n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+c)
and gn(z)(g(z)− 1)g(z + c) share ”(α(z), 2)”, then f ≡ g.
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In 2016, P. Sahoo and B. Saha studied the uniqueness of certain type of
difference polynomial sharing a small function with finite weight and obtained
the following results.

Theorem 1.4. [23] Let f and g be two transcendental entire functions of finite
order, and α(z)(6≡ 0) be a small function with respect to both f and g. Suppose
that c is a non-zero complex constant, n(≥ 1), m ≥ 1 and k(≥ 0) are integers
satisfying n ≥ 2k +m+ 6. If [fn(z)(fm(z)− 1)f(z + c)](k) and [gn(z)(gm(z)−
1)g(z + c)](k) share (α(z), 2), then f = tg, where tm = 1.

Theorem 1.5. [23] Let f and g be two transcendental entire functions of finite
order, and α(z)(6≡ 0) be a small function with respect to both f and g. Suppose
that c is a non-zero complex constant, n(≥ 1), m(≥ 1) and k(≥ 0) are integers
satisfying n ≥ 2k+m+ 6 when m ≤ k+ 1 and n ≥ 4k−m+ 10 when m > k+ 1.
If (fn(z)(f(z)−1)mf(z+c))(k) and (gn(z)(g(z)−1)mg(z+c))(k) share (α(z), 2),
then either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where
R(f, g) is given by R(ω1, ω2) = ωn1 (ω1 − 1)mω1(z + c)− ωn2 (ω2 − 1)mω2(z + c).

Very recently, H.P. Waghamore studied the uniqueness of difference polyno-

mial of the form fn(z)(f(z)−1)m
∏d
j=1 f(z+cj)

vj and fn(z)(fm(z)−1)
∏d
j=1 f(z+

cj)
vj where cj(j = 1, 2, ..., d) are complex constants, vj(j = 1, 2, ..., d) are non-

negative integers and σ = v1 + v2 + ...+ vd and obtained the following results.

Theorem 1.6. [24] Let f and g be two transcendental entire functions of finite
order, and α(z)( 6≡ 0) be a small function with respect to both f and g. Suppose
that cj(j = 1, 2, ..., d) are non-zero complex constants, vj(j = 1, 2, ..., d) are non-
negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k+m+σ+5.

If [fn(z)(fm(z)−1)
∏d
j=1 f(z+cj)

vj ](k) and [gn(z)(gm(z)−1)
∏d
j=1 g(z+cj)

vj ](k)

share (α(z), 2), then f = tg, where tm = 1.

Theorem 1.7. [24] Let f and g be two transcendental entire functions of finite
order, and α(z)( 6≡ 0) be a small function with respect to both f and g. Suppose
that cj(j = 1, 2, ..., d) are non-zero complex constants, vj(j = 1, 2, ..., d) are
non-negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k +
m + σ + 5 when m ≤ k + 1 and n ≥ 4k − m + σ + 9 when m > k + 1. If

[fn(z)(f(z)−1)m
∏d
j=1 f(z+ cj)

vj ](k) and [gn(z)(g(z)−1)m
∏d
j=1 g(z+ cj)

vj ](k)

share (α(z), 2), then either f = tg, or f and g satisfy the algebraic equation

R(f, g) = 0 where R(f, g) is given by R(ω1, ω2) = ωn1 (ω1 − 1)m
∏d
j=1 ω1(z +

cj)
vj − ωn2 (ω2 − 1)m

∏d
j=1 ω2(z + cj)

vj .

Regarding Theorem 1.4-1.7, a natural question to ask is what can be said if we
study the uniqueness of difference polynomials without the notion of weighted
sharing ?

In the paper, our main concern is to find the possible answer of the above
question. We prove the following results.
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Theorem 1.8. Let f and g be two transcendental entire functions of finite order,
and α(z)( 6≡ 0) be a small function with respect to both f and g. Suppose that
cj(j = 1, 2, ..., d) are non-zero complex constants, vj(j = 1, 2, ..., d) are non-
negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ max{2k +

m + σ + 5, 2d + σ + 2}. If E3)(α(z), [fn(z)(fm(z) − 1)
∏d
j=1 f(z + cj)

vj ](k)) =

E3)(α(z), [gn(z)(gm(z) − 1)
∏d
j=1 g(z + cj)

vj ](k)), then f = hg, where h is a
constant and hm = 1.

Theorem 1.9. Let f and g be two transcendental entire functions of finite order,
and α(z)( 6≡ 0) be a small function with respect to both f and g. Suppose that
cj(j = 1, 2, ..., d) are non-zero complex constants, vj(j = 1, 2, ..., d) are non-
negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k+m+σ+5
when m ≤ k+1 and n ≥ 4k−m+σ+9 when m > k+1. If E3)(α(z), [fn(z)(f(z)−
1)m

∏d
j=1 f(z+cj)

vj ](k)) = E3)(α(z), [gn(z)(g(z)−1)m
∏d
j=1 g(z+cj)

vj ](k)), then

either f = g, or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g)

is given by R(ω1, ω2) = ωn1 (ω1−1)m
∏d
j=1 ω1(z+cj)

vj−ωn2 (ω2−1)m
∏d
j=1 ω2(z+

cj)
vj .

2. Preliminary Lemmas

In this section, we present some lemmas which will be needed in the sequel.
We will denote by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 2.1. [27] Let f be a meromorphic function of finite order and c is a
non-zero complex constant. Then

m

(
r,
f(z + c)

f(z)

)
= m

(
r,

f(z)

f(z + c)

)
= S(r, f) .

Arguing in a similar manner as in [5], we obtain the following lemma.

Lemma 2.2. Let f be an entire function of finite order. Then T (r, fn(z)(fm(z)−
1)
∏d
j=1 f(z + cj)

vj ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.3. [24] Let f be an entire function of finite order. Then T (r, fn(z)(f(z)−
1)m

∏d
j=1 f(z + cj)

vj ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.4. [28] Let f be a non-constant meromorphic functions and p, k be
two positive integers. Then

Np

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +Np+k

(
r,

1

f

)
+ S(r, f) ,

Np

(
r,

1

f (k)

)
≤ kN(r, f) +Np+k

(
r,

1

f

)
+ S(r, f) .
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Lemma 2.5. [11] If F and G are two non-constant meromorphic functions and
E3)(1, F ) = E3)(1, G), then one of the following cases holds:

(1) T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2(r, F ) + 2N2

(
r,

1

G

)
+2N2(r,G) + S(r, F ) + S(r,G) ,

(2) F ≡ G, (3) FG ≡ 1 .

Lemma 2.6. Let h be a transcendental meromorphic function of finite order.
Then we have

T

r, hn+m(z)
d∏
j=1

h(z + cj)
vj

 ≥ (n+m− σ)T (r, h) + S(r, f) ,

where σ = v1 + v2 + ...+ vd.

Proof. From Lemma 2.1, we have

(n+m+ σ)T (r, h) = T (r, hn+m(z)hσ) + S(r, h)

= m(r, hn+m(z)hσ) +N(r, hn+m(z)hσ) + S(r, h)

= m

r, hn+m(z)

d∏
j=1

h(z + cj)
vj

hσ∏d
j=1 h(z + cj)vj


+N

r, hn+m(z)

d∏
j=1

h(z + cj)
vj

hσ∏d
j=1 h(z + cj)vj

+ S(r, h)

≤ T

r, hn+m(z)

d∏
j=1

h(z + cj)
vj

+ 2σT (r, h) + S(r, h) .

Thus, we get the conclusion.

3. Proof of Theorem 1.8

Let

F1 = fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj , G1 = gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj ,

F =
F

(k)
1

α(z)
, G =

G
(k)
1

α(z)
.

Then F and G are transcendental meromorphic functions and E3)(1, F ) =
E3)(1, G) except the zeros and poles of α(z). By Lemma 2.2 and Lemma 2.4 we
have

N2

(
r,

1

F

)
≤ N2

(
r,

1

F
(k)
1

)
+ S(r, f) ≤ T (r, F

(k)
1 )
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−T (r, F1) +N2+k

(
r,

1

F1

)
+ S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +N2+k

(
r,

1

F1

)
+ S(r, f) . (1)

So we get

(n+m+ σ)T (r, f) ≤ T (r, F ) +N2+k

(
r,

1

F1

)
−N2

(
r,

1

F

)
+ S(r, f) . (2)

According to Lemma 2.4, we can deduce

N2

(
r,

1

F

)
≤ N2

(
r,

1

F
(k)
1

)
+ S(r, f) ≤ N2+k

(
r,

1

F1

)
+ S(r, f) . (3)

Similarly we have

(n+m+ σ)T (r, g) ≤ T (r,G) +N2+k

(
r,

1

G1

)
−N2

(
r,

1

G

)
+ S(r, g) . (4)

And

N2

(
r,

1

G

)
≤ N2+k

(
r,

1

G1

)
+ S(r, g) . (5)

Suppose, if possible the (1) of Lemma 2.5 holds, that is

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2(r, F ) + 2N2

(
r,

1

G

)
+2N2(r,G) + S(r, f) + S(r, g) . (6)

By (2), (3), (4), (5) and (6), we have

(n+m+ σ)(T (r, f) + T (r, g)) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+N2+k

(
r,

1

F1

)
+N2+k

(
r,

1

G1

)
+ S(r, f) + S(r, g)

≤ 2N2+k

(
r,

1

F1

)
+ 2N2+k

(
r,

1

G1

)
+ S(r, f) + S(r, g)

≤ (2k + 4 + 2m+ 2σ)(T (r, f) + T (r, g)) + S(r, f) + S(r, g) . (7)

So

(n− 2k −m− σ − 4)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g) , (8)

which contradicts with the fact that n ≥ max{2k + m + σ + 5, 2d + σ + 2}.
Therefore, by Lemma 2.5 we have either FG = 1 or F = G.

If FG = 1, that is

[fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj ](k) · [gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj ](k)
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=α2 . (9)

We can deduce from above that

N

(
r,

1

f

)
= N

(
r,

1

f − 1

)
= S(r, f) , (10)

which is impossible. So we have F = G, that is

[fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj ](k) = [gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj ](k) . (11)

Integrating above, we deduce

[fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj ](k−1)

= [gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj ](k−1) + c , (12)

where c is a constant. If c 6= 0, by the second fundamental theorem of Nevan-
linna, we have

T (r, F
(k−1)
1 ) ≤ N

(
r,

1

F
(k−1)
1

)
+N

(
r,

1

F
(k−1)
1 − c

)
+ S(r, F )

≤ N

(
r,

1

F
(k−1)
1

)
+N

(
r,

1

G
(k−1)
1

)
+ S(r, F ) . (13)

By Lemma 2.4, we obtain

(n+m+ σ)T (r, f) ≤ T (r, F
(k−1)
1 )−N

(
r,

1

F
(k−1)
1

)

+Nk

(
r,

1

F1

)
+ S(r, f)

≤ N

(
r,

1

G
(k−1)
1

)
+Nk

(
r,

1

F1

)
+ S(r, f) ,

≤ Nk
(
r,

1

F1

)
+Nk

(
r,

1

G1

)
+ S(r, f) + S(r, g) ,

≤ (k +m+ σ)(T (r, f) + T (r, g)) + S(r, f) + S(r, g) . (14)

Similarly,

(n+m+ σ)T (r, g) ≤ (k +m+ σ)(T (r, f) + T (r, g)) + S(r, f) + S(r, g) . (15)

Combining (14) and (15), we obtain

(n− 2k −m− σ)(T (r, f) + T (r, g) ≤ S(r, f) + S(r, g) , (16)
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which contradicts with n ≥ 2k + m + σ + 5. Hence c = 0. Integrating the (12)
k − 1 times, we can deduce

fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj = gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj . (17)

Set h = f
g . If h is not a constant, from (17) we have

gm(z) =
hn(z)

∏d
j=1 h(z + cj)

vj − 1

hn+m(z)
∏d
j=1 h(z + cj)vj − 1

. (18)

If 1 is a Picard value of hn+m(z)
∏d
j=1 h(z+cj)

vj , then by the second fundamental
theorem of Nevanlinna,

T

hn+m(z)

d∏
j=1

h(z + cj)
vj

 ≤ N
r, hn+m(z)

d∏
j=1

h(z + cj)
vj


+N

(
r,

1

hn+m(z)
∏d
j=1 h(z + cj)vj

)
+ S(r, h)

≤ (2d+ 2)T (r, h) + S(r, h) . (19)

From the above inequality and n ≥ max{2k + m + σ + 5, 2d + σ + 2}, by
Lemma 2.6, we can get a contradiction. Therefore, 1 is not a Picard value

of hn+m(z)
∏d
j=1 h(z + cj)

vj . If hn+m(z)
∏d
j=1 h(z + cj)

vj 6≡ 1, from (18), we
have

N

(
r,

1

hn+m(z)
∏d
j=1 h(z + cj)vj − 1

)
≤ N

(
r,

1

hm − 1

)
≤ mT (r, h) + S(r, h) . (20)

From the above inequality and by the second fundamental theorem of Nevan-
linna, we have

T

r, hn+m(z)

d∏
j=1

h(z + cj)
vj

 ≤ N
r, hn+m(z)

d∏
j=1

h(z + cj)


+N

(
r,

1

hn+m(z)
∏d
j=1 h(z + cj)vj

)

+N

(
r,

1

hn+m(z)
∏d
j=1 h(z + cj)vj − 1

)
+ S(r, h)

≤ (m+ 2d+ 2)T (r, h) + S(r, h) , (21)

which is a contradiction with n ≥ max{2k +m+ σ + 5, 2d+ σ + 2}.
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If hn+m(z)
∏d
j=1 h(z + cj)

vj ≡ 1, we have

(n+m)T (r, h) ≤ σT (r, h) + S(r, h) , (22)

which is a contradiction with n ≥ max{2k +m+ σ + 5, 2d+ σ + 2}. Therefore,
h is a constant. Substituting f = gh into (17), we can get

d∏
j=1

g(z + cj)
vj
(
gn+m(z)(hn+m+σ − 1) + gn(z)(hn+σ − 1)

)
= 0 . (23)

Since g is an entire function, we have
∏d
j=1 g(z + cj)

vj 6= 0. Thus

gn+m(z)(hn+m+σ − 1) + gn(z)(hn+σ − 1) = 0 . (24)

If hn+σ 6= 1, by (24), we can deduce T (r, g) = S(r, g), which contradicts with a
transcendental function g. So hn+σ = 1. We can also deduce that hn+m+σ = 1.
Then hm = 1. This completes the proof of Theorem 1.8.

4. Proof of Theorem 1.9

Let

F1 = fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
vj , G1 = gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
vj ,

F =
F

(k)
1

α(z)
, G =

G
(k)
1

α(z)
.

Then F and G are transcendental meromorphic functions and E3)(1, F ) =
E3)(1, G) except the zeros and poles of α(z). By Lemma 2.3 and Lemma 2.4 we
can get

(n+m+ σ)T (r, f) ≤ T (r, F ) +N2+k

(
r,

1

F1

)
−N2

(
r,

1

F

)
+ S(r, f) , (25)

N2

(
r,

1

F

)
≤ N2+k

(
r,

1

F1

)
+ S(r, f) , (26)

(n+m+ σ)T (r, g) ≤ T (r,G) +N2+k

(
r,

1

G1

)
−N2

(
r,

1

G

)
+ S(r, g) , (27)

N2

(
r,

1

G

)
≤ N2+k

(
r,

1

G1

)
+ S(r, g) . (28)

Suppose, if possible the (1) of Lemma 2.5 holds, that is

T (r, F ) + T (r,G) ≤ 2N2

(
r,

1

F

)
+ 2N2(r, F ) + 2N2

(
r,

1

G

)
+2N2(r,G) + S(r, f) + S(r, g) . (29)
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By (25), (26), (27), (28) and (29), we have

(n+m+ σ)(T (r, f) + T (r, g)) ≤ 2N2+k

(
r,

1

F1

)
+2N2+k

(
r,

1

G1

)
+ S(r, f) + S(r, g) . (30)

If m > k + 1, by (30) we obtain

(n+m− 4k − σ − 8)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g) , (31)

which contradicts with n ≥ 4k −m + σ + 9 when m > k + 1. If m ≤ k + 1, by
(30) we obtain

(n− 2k −m− σ − 4)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g) , (32)

which contradicts with n ≥ 2k + m + σ + 5 when m ≤ k + 1. Therefore, by
Lemma 2.5 we have either FG = 1 or F = G.

If FG = 1, that is

[fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
vj ](k) · [gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
vj ](k)

= α2 . (33)

Proceeding in a like manner as in the proof of Theorem 1.8 we arrive at a con-
tradiction.

If F = G, then applying the same technique as in the proof of Theorem 1.8
we obtain

fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
vj = gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
vj . (34)

Set h = f
g . If h is a constant, then substituting f = gh in (34), we deduce that

gn(z)

d∏
j=1

g(z + cj)
vj [gm(z)(hn+m+σ − 1)− C1

mg
m−1(z)(hn+m+σ−1 − 1)

+...+ (−1)m(hn+σ − 1)] = 0 . (35)

Since g is a transcendental entire function, we have gn(z)
∏d
j=1 g(z + cj)

vj 6= 0.
So we obtain

gm(z)(hn+m+σ − 1)− C1
mg

(m−1)(z)(hn+m+σ − 1)

+...+ (−1)m(hn+σ − 1) = 0 , (36)

which implies h = 1. Hence f = g.
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If h is not a constant, then it follows from (34) that f and g satisfy the
algebraic equation R(f, g) = 0, where R(f, g) is given by

R(ω1, ω2) = ωn1 (ω1 − 1)m
d∏
j=1

ω1(z + cj)
vj − ωn2 (ω2 − 1)m

d∏
j=1

ω2(z + cj)
vj . (37)

This completes the proof of Theorem 1.9.
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