# CONVERGENCE ANALYSIS OF PARALLEL $S$-ITERATION PROCESS FOR A SYSTEM OF VARIATIONAL INEQUALITIES USING ALTERING POINTS 

CHAHN YONG JUNG, SATYENDRA KUMAR, SHIN MIN KANG*


#### Abstract

In this paper we have considered a system of mixed generalized variational inequality problems defined on two different domains in a Hilbert space. It has been shown that the solution of a system of mixed generalized variational inequality problems is equivalent to altering point formulation of some mappings. A new parallel $S$-iteration type process has been considered which converges strongly to the solution of a system of mixed generalized variational inequality problems.


AMS Mathematics Subject Classification : 47J20, 47J25
Key words and phrases : System of variational inequalities, altering points, parallel $S$-iteration process

## 1. Introduction

Let $H$ be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. Let $C$ be a nonempty subset of $H$ and $T: C \rightarrow H$ an operator. The variational inequality problem $V I(C, T)$ is to find $x^{*} \in C$ such that

$$
\begin{equation*}
\left\langle T x^{*}, x-x^{*}\right\rangle \geq 0 \quad \text { for all } x \in C . \tag{1}
\end{equation*}
$$

The set of solutions of variational inequality $V I(C, T)$ is denoted by $\Omega[V I(C, T)]$, i.e.,

$$
\Omega[V I(C, T)]:=\left\{x^{*} \in C:\left\langle T x^{*}, x-x^{*}\right\rangle \geq 0 \text { for all } x \in C\right\} .
$$

It is well known that the variational inequality problem (1) is equivalent to the following fixed point problem:

$$
\text { to find } x^{*} \in C \text { such that } x^{*}=P_{C}(I-\lambda T) x^{*},
$$

where $\lambda>0$ is a constant and $P_{C}$ is a projection mapping from $H$ onto $C$.

Received February 18, 2018. Revised March 23, 2018. Accepted March 27, 2018. * Corresponding author.
(C) 2018 Korean SIGCAM and KSCAM.

The classical variational inequality problem was initially introduced by Stampacchia $[19,34]$ in 1964. The variational inequality problem is one of the very useful and interesting problem in the literature. Many of the problems of pure and applied sciences can be formulated in form of variational inequality problem. Several existence results, iterative algorithms, extensions and generalizations for the variational inequality problems has been studied by many authors in past years (see $[3-15,17,18,22-24,28,36-41]$ ). One of the important generalization of classical variational inequality problem is a system of variational inequality problems which has been studied by many authors in various frameworks (see [3-6, 9, 17, 24, 36]).

In 2001, Verma [37] introduced and studied a new system of monotone variational inequalities and developed some iterative algorithms for approximation of solutions of considered problems in Hilbert spaces. Since then the system of monotone variational inequalities has been generalized and studied by many authors in different ways (see, $[7,8,12,14,18,22,38-40]$ ).

In 2012, Wan and Zhan [41] considered a new system of generalized mixed variational inequality problems (GMVIP) in Hilbert spaces. By using concept of $\eta$-subdifferential and $\eta$-proximal mapping they demonstrated that GMVIP is equivalent to a fixed point problem. They suggested some iterative technique to solve the system of generalized mixed variational inequalities. In 2013, Guo et al. [13] introduced a system of generalized nonlinear mixed variational inequalities and obtained the approximate solution by using the resolvent parallel technique.

In 2014, Sahu [28] introduced the notion of altering points and studied existence and approximation results for altering points. It is remarkable that many problems of nonlinear analysis such as best proximity pairs, a system of nonlinear variational inequalities and a system of hierarchical variational inequalities are equivalent to altering point formulation of some mappings (see [28]).

It is well known that $S$-iteration process introduced by Agarwal et al. [1] is a faster method to find the fixed point of contraction operator than the Pi card [26], Mann [21], and Ishikawa [16] iteration processes (see [2, 20, 30]). The $S$-iteration process is more applicable than the Picard, Mann, and Ishikawa iteration processes because it is faster for contraction mappings and also works for nonexpansive type mappings (see $[25,35]$ ). Because of its super convergence, the $S$-iteration process attracted many researchers as an alternate iteration process for solving various nonlinear problems (see [25,29,31-33,35]). In 2011, Sahu [27] introduced the notion of $S$-operator as follows:

Let $C$ be a nonempty convex subset of a vector space $X$ and $T: C \rightarrow C$ an operator. Then, an operator $G_{\alpha, \beta, T}: C \rightarrow C$ is said to be an $S$-operator generated by $\alpha \in(0,1], \beta \in(0,1)$ and $T$ if

$$
G_{\alpha, \beta, T}=(1-\alpha) T+\alpha T((1-\beta) I+\beta T),
$$

and an operator $G_{\beta, T}: C \rightarrow C$ is said to be an $S$-operator generated by $\beta \in(0,1)$ and $T$ if

$$
G_{\beta, T}=T((1-\beta) I+\beta T) .
$$

It is easy to see that $G_{\alpha, \beta, T}$ is contraction with contractivity factor $k(1-\alpha \beta(1-$ $k$ )) if $T$ is a contraction with contractivity factor $k$ and $G_{\alpha, \beta, T}$ is nonexpansive if $T$ is a nonexpansive.

Motivated by $S$-operator, Sahu [27] introduced normal $S$-iteration process as follows:

Let $C$ be a nonempty convex subset of a normed space $X$ and $T: C \rightarrow C$ an operator. Then, for arbitrary $x_{1} \in C$, the normal $S$-iteration process [27] is defined by

$$
x_{n+1}=T\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}\right], \quad n \in \mathbb{N},
$$

where $\left\{\alpha_{n}\right\}$ is a real sequence in $(0,1)$.
Using the idea of normal $S$-iteration process, Sahu [28] introduced a parallel $S$-iteration process for finding altering points of mappings $T_{1}$ and $T_{2}$ as follows:

Let $C_{1}$ and $C_{2}$ be two nonempty closed convex subsets of a Banach space $X$. Let $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ be two mappings. For $\alpha \in(0,1)$ and arbitrary $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, parallel $S$-iteration process is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=T_{2}\left[(1-\alpha) y_{n}+\alpha T_{1} x_{n}\right] ;  \tag{2}\\
y_{n+1}=T_{1}\left[(1-\alpha) x_{n}+\alpha T_{2} y_{n}\right], \quad n \in \mathbb{N} .
\end{array}\right.
$$

In [41], Wan and Zhan considered the following generalized mixed variational inequality problems in Hilbert spaces:

Let $C$ be a closed and convex set in a Hilbert space $H$. Let $T_{i}, \eta_{i}: H \times H \rightarrow H$ and $g_{i}: H \rightarrow H$ be single-valued mappings and let $\psi_{i}: H \rightarrow \mathbb{R} \cup\{\infty\}$ be lower semicontinuous, $\eta_{i}$-subdifferentiable and proper function on $H(i=1,2)$. Find $x^{*}, y^{*} \in H$ such that, for all $x \in H$

$$
\left\{\begin{array}{l}
\left\langle\rho T_{1}\left(y^{*}, x^{*}\right)+x^{*}-g_{1}\left(y^{*}\right), \eta_{1}\left(x, x^{*}\right)\right\rangle+\rho^{\prime} \psi_{1}(x)-\rho^{\prime} \psi_{1}\left(x^{*}\right) \geq 0  \tag{3}\\
\left\langle\sigma T_{2}\left(x^{*}, y^{*}\right)+y^{*}-g_{2}\left(x^{*}\right), \eta_{2}\left(x, y^{*}\right)\right\rangle+\sigma^{\prime} \psi_{2}(x)-\sigma^{\prime} \psi_{2}\left(y^{*}\right) \geq 0
\end{array}\right.
$$

where the parameters $\rho, \rho^{\prime}, \sigma, \sigma^{\prime}>0$ are constants. Under suitable conditions on mappings and parameters, they proved that the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by following Mann type iteration process

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}\left(y_{n}\right)-\rho T_{1}\left(y_{n}, x_{n}\right)\right]  \tag{4}\\
y_{n}=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}\left(x_{n}\right)-\sigma T_{2}\left(x_{n}, y_{n}\right)\right], \quad n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$, converges strongly to $x^{*}$ and $y^{*}$, respectively.
Recently, Sahu et al. [29] defined a new system of generalized variational inequalities on two closed convex subsets of a real Hilbert space and established a strong convergence result using altering points technique.

Motivated and inspired by works of Wan and Zhan [41], Guo et al. [13], Sahu [28] and Sahu et al. [29], the main purpose of this paper is to introduce a new system of mixed generalized variational inequality problems (8) in Hilbert space and to show its equivalence altering point formulation. We introduce a parallel $S$-iteration process to approximate the solution of considered system of mixed generalized variational inequalities. Our result significantly extends the
corresponding result of Wan and Zhan [41] for parallel $S$-iteration process and generalizes the result of Sahu [28].

## 2. Preliminaries

Throughout this paper, $H$ is a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, respectively. We denote by $I$ the identity operator of $H$. Also, we denote by $\rightarrow$ the strong convergence. The symbol $\mathbb{N}$ stands for the set of all natural numbers.

Let $C$ be a nonempty subset of $H$. A mapping $T: C \rightarrow C$ is said to be
(1) $\beta$-strongly monotone if there exists a constant $\beta>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq \beta\|x-y\|^{2} \quad \text { for all } x, y \in C
$$

(2) $\mu$-cocoercive if there exists $\mu>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq \mu\|T(x)-T(y)\|^{2} \quad \text { for all } x, y \in C
$$

(3) relaxed $\gamma$-cocoercive if there exists a constant $\gamma>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq(-\gamma)\|T(x)-T(y)\|^{2} \quad \text { for all } x, y \in C
$$

(4) relaxed ( $\gamma, r$ )-cocoercive if there exist constants $\gamma \geq 0$ and $r>0$ such that $\langle T(x)-T(y), x-y\rangle \geq(-\gamma)\|T(x)-T(y)\|^{2}+r\|x-y\|^{2} \quad$ for all $x, y \in C$.
It is clear that every $\beta$-strongly monotone mapping is $\beta$-expansive and when $\beta=1$, it is expansive. Every $\mu$-cocoercive mapping is $\frac{1}{\mu}$-Lipschitz continuous mapping. If $\gamma=0$, then relaxed $(\gamma, r)$-cocoercive mapping is $r$-strongly monotone. Thus, the class of relaxed $(\gamma, r)$-cocoercive mappings is more general than that of the class of strongly monotone mappings.

Definition 2.1. [28] Let $C_{1}, C_{2}, \ldots, C_{k}$ be nonempty subsets of a metric space $X$ and $T_{1}: C_{1} \rightarrow C_{2}, T_{2}: C_{2} \rightarrow C_{3}, \ldots, T_{k}: C_{k} \rightarrow C_{1}$ be mappings. Then $x_{1} \in$ $C_{1}, x_{2} \in C_{2}, \ldots, x_{k} \in C_{k}$ are said to be altering points of mappings $T_{1}, T_{2}, \ldots, T_{k}$ if $T_{1} x_{1}=x_{2}, T_{2} x_{2}=x_{3}, \ldots, T_{k} x_{k}=x_{1}$.

In particular for $k=2$, the point $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ is altering point of mappings $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ if

$$
\left\{\begin{array}{l}
T_{1}\left(x^{*}\right)=y^{*}  \tag{5}\\
T_{2}\left(y^{*}\right)=x^{*}
\end{array}\right.
$$

Thus $x^{*}$ and $y^{*}$ are altering points of $T_{1}$ and $T_{2}$ if (5) holds. The set of altering points of mappings $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ is denoted by $\operatorname{Alt}\left(T_{1}, T_{2}\right)$ i.e.,

$$
\operatorname{Alt}\left(T_{1}, T_{2}\right)=\left\{\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}: T_{1}\left(x^{*}\right)=y^{*} \text { and } T_{2}\left(y^{*}\right)=x^{*}\right\}
$$

Example 2.2. [28] Let $X=C_{1}=C_{2}=[0,1]$ and define $T_{1}, T_{2}: X \rightarrow X$ by $T_{1}(x)=1-x$ and $T_{2}(x)=x^{2}, x \in X$. Note $T_{2} T_{1}(x)=T_{2}(1-x)=(1-x)^{2}$ and $T_{1} T_{2}(x)=T_{1}\left(x^{2}\right)=1-x^{2}$ for all $x \in X$. Then $x^{*}=\frac{\sqrt{5}-1}{2}$ and $y^{*}=\frac{3-\sqrt{5}}{2}$ are
altering points of $T_{1}$ and $T_{2}$. The graphical representation of altering points of mappings $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ is given in Figure 1.


Figure 1. Graphical representation of altering points

Example 2.3. Let $X=\ell_{2}, C_{1}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in \ell_{1}:\left|x_{n}\right| \leq \frac{1}{2}, \forall n \in \mathbb{N}\right\}$ and $C_{2}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in \ell_{1}:\left|x_{n}\right| \leq 1, \forall n \in \mathbb{N}\right\}$. Define $T_{1}: C_{1} \rightarrow C_{2}$ by $T_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(0, x_{1}, x_{2}, \ldots, x_{n-1}, \ldots\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in C_{1}$ and $T_{2}: C_{2} \rightarrow C_{1}$ by $T_{2}\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)=\left(\frac{x_{1}^{2}}{2}, \frac{x_{2}^{2}}{2}, \ldots, \frac{x_{n}^{2}}{2}, \ldots\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ $\in C_{2}$. Note that the mapping $T_{2} T_{1}: C_{1} \rightarrow C_{1}$ defined by $T_{2} T_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right)$ $=\left(0, \frac{x_{1}^{2}}{2}, \frac{x_{2}^{2}}{2}, \ldots, \frac{x_{n-1}^{2}}{2}, \ldots\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in C_{1}$ is a contraction mapping and the points $x^{*}=(0,0, \ldots, 0, \ldots) \in C_{1}$ and $y^{*}=(0,0, \ldots, 0, \ldots) \in C_{2}$ are altering points of mappings $T_{1}$ and $T_{2}$. The point $x^{*}=(0,0, \ldots, 0, \ldots) \in C_{1}$ is also a fixed point of mapping $T_{2} T_{1}: C_{1} \rightarrow C_{1}$.

The following existence and approximation results for altering points are given in Sahu [28].

Theorem 2.4. [28, Theorem 3.1] Let $C_{1}$ and $C_{2}$ be nonempty closed subsets of a complete metric space $X$ and let $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ be two Lipschitz continuous mappings with Lipschitz constants $k_{1}$ and $k_{2}$, respectively such that $k_{1} k_{2}<1$. Then we have the following:
(a) There exists a unique point $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that $x^{*}$ and $y^{*}$ are altering points of mappings $T_{1}$ and $T_{2}$.
(b) For arbitrary $x_{0} \in C_{1}$, a sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C_{1} \times C_{2}$ generated by

$$
\left\{\begin{array}{l}
y_{n}=T_{1} x_{n}, \\
x_{n+1}=T_{2} y_{n} \quad \text { for all } n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
\end{array}\right.
$$

converges to $\left(x^{*}, y^{*}\right)$.
Theorem 2.5. [28, Theorem 3.6] Let $C_{1}$ and $C_{2}$ be two nonempty closed convex subsets of a Banach space $X$. Let $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ be two Lipschitz continuous mappings with Lipschitz constants $k_{1}$ and $k_{2}$ such that $k_{1} k_{2}<1$. Then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ in $C_{1} \times C_{2}$ generated by parallel $S$ iteration process (2) converges strongly to a unique point $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that $x^{*}$ and $y^{*}$ are altering points of mappings $T_{1}$ and $T_{2}$.
Definition 2.6. [10, 11] Let $\eta: H \times H \rightarrow H$ be a single-valued mapping. A proper function $\psi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ is said to be $\eta$-subdifferentiable at a point $x \in H$ if there exists a point $x^{*} \in H$ such that

$$
\psi(y)-\psi(x) \geq\left\langle x^{*}, \eta(y, x)\right\rangle \quad \text { for all } y \in H
$$

where $x^{*}$ is called an $\eta$-subgradient of $\psi$ at $x$. The set of all $\eta$-subgradients of $\psi$ at $x$ is denoted by $\Delta \psi(x)$. The mapping $\Delta \psi: H \rightarrow 2^{H}$ defined by

$$
\begin{equation*}
\Delta \psi(x)=\left\{x^{*} \in H: \psi(y)-\psi(x) \geq\left\langle x^{*}, \eta(y, x)\right\rangle \text { for all } y \in H\right\} \tag{6}
\end{equation*}
$$

is said to be $\eta$-subdifferential of $\psi$ at $x$.
Remark 2.1. If $\eta(y, x)=y-x$ for all $y, x \in H$, then Definition 2.6 reduces to the usual definition of subdifferential of a functional $\psi$. If $\psi$ is defferentiable at $x \in H$ and satisfies

$$
\psi(x+\lambda \eta(y, x)) \leq \lambda \psi(y)+(1-\lambda) \psi(x) \quad \text { for all } y \in H, \lambda \in[0,1]
$$

then $\psi$ is $\eta$-subdifferentiable at $x \in H$.
Definition 2.7. [10, 11] Let $\psi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper functional. For any given $x \in H$ and any $\rho>0$, if there exists a mapping $\eta: H \times H \rightarrow H$ and a unique point $u \in H$ such that

$$
\begin{equation*}
\langle u-x, \eta(y, u)\rangle \geq \rho \psi(u)-\rho \psi(y) \quad \text { for all } y \in H \tag{7}
\end{equation*}
$$

then the mapping $x \mapsto u$, denoted by $J_{\rho}^{\triangle \psi}(x)$, is said to be an $\eta$-proximal mapping of $\psi$.

Definition 2.8. [7,15] A two-variable mapping $T: C \times C \rightarrow H$ is said to be strongly relaxed $(\gamma, r)$-cocoercive in the first variable if there exist constants $\gamma, r>0$ such that, for all $x, y \in C$
$\langle T(x, u)-T(y, v), x-y\rangle \geq(-\gamma)\|T(x, u)-T(y, v)\|^{2}+r\|x-y\|^{2} \quad$ for all $u, v \in C$.
Definition 2.9. [41] A two-variable mapping $T: C \times C \rightarrow H$ is said to be relaxed $(\gamma, r)$-cocoercive in the first variable if there exist constants $\gamma, r>0$ such that, for all $x, y \in C$
$\langle T(x, u)-T(y, u), x-y\rangle \geq(-\gamma)\|T(x, u)-T(y, u)\|^{2}+r\|x-y\|^{2} \quad$ for all $u \in C$.
If $T$ is the univariate operator, then the relaxed $(\gamma, r)$-cocoercive in the first variable of two-variable mapping $T(\cdot, \cdot)$ reduces to the relaxed $(\gamma, r)$-cocoercive of univariate operator $T$.

Definition 2.10. [23] A mapping $\eta: H \times H \rightarrow H$ is said to be
(1) $\delta$-strongly monotone if there exists a constant $\delta>0$ such that

$$
\langle\eta(x, y), x-y\rangle \geq \delta\|x-y\|^{2} \quad \text { for all } x, y \in H
$$

(2) $\tau$-Lipschitz continuous if there exists a constant $\tau>0$ such that

$$
\|\eta(x, y)\| \leq \tau\|x-y\| \quad \text { for all } x, y \in H
$$

Definition 2.11. [10, 11] A function $f: H \times H \rightarrow \mathbb{R} \cup\{+\infty\}$ is said to be 0-diagonally quasi-concave (in short, 0 -DQCV) in $x$ if for any finite set $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\} \subset H$ and for any $y=\sum_{i=1}^{n} \lambda_{i} x_{i}$ with $\lambda_{i} \geq 0$ and $\sum_{i=1}^{n} \lambda_{i}=1$,

$$
\min _{1 \leq i \leq n} f\left(x_{i}, y\right) \leq 0
$$

Lemma 2.12. [7] Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be three nonnegative real sequences satisfying the following conditions:

$$
a_{n+1} \leq\left(1-\lambda_{n}\right) a_{n}+b_{n}+c_{n} \quad \text { for all } n \geq n_{0}
$$

where $n_{0}$ is some nonnegative integer, $\lambda_{n} \in(0,1)$ with $\sum_{n=0}^{\infty} \lambda_{n}=\infty, b_{n}=$ $o\left(\lambda_{n}\right)$ and $\sum_{n=0}^{\infty} c_{n} \leq \infty$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

Let $H$ be a real Hilbert space and let $C_{1}, C_{2}$ be two nonempty closed convex subsets of $H$. Let $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ be two mappings, $g_{i}: H \rightarrow H$ be single valued mappings and $\psi_{i}: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be lower semicontinuous and $\eta$-subdifferentiable function $(i=1,2)$. Consider the following system of mixed generalized variational inequality problems (SMGVIP):

Find $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that, for all $y \in C_{2}$ and $x \in C_{1}$

$$
\left\{\begin{array}{l}
\left\langle\rho T_{1}\left(x^{*}\right)+y^{*}-g_{1}\left(x^{*}\right), \eta_{1}\left(y, y^{*}\right)\right\rangle+\rho^{\prime} \psi_{1}(y)-\rho^{\prime} \psi_{1}\left(y^{*}\right) \geq 0  \tag{8}\\
\left\langle\sigma T_{2}\left(y^{*}\right)+x^{*}-g_{2}\left(y^{*}\right), \eta_{2}\left(x, x^{*}\right)\right\rangle+\sigma^{\prime} \psi_{2}(x)-\sigma^{\prime} \psi_{2}\left(x^{*}\right) \geq 0
\end{array}\right.
$$

where $\sigma>0, \sigma^{\prime}>0, \rho>0$ and $\rho^{\prime}>0$ are constants.
Define

$$
I_{C_{1}}(u)=\left\{\begin{array}{ll}
0 & \text { if } u \in C_{1}, \\
+\infty, & \text { otherwise }
\end{array} \quad I_{C_{2}}(u)= \begin{cases}0 & \text { if } u \in C_{2} \\
+\infty, & \text { otherwise }\end{cases}\right.
$$

Now consider the following particular cases of the problem (8):
(I) If $\eta_{1}(u, v)=\eta_{2}(u, v)=u-v$, then the SMGVIP (8) is equivalent to the following system of generalized mixed variational inequalities:

Find $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that, for all $y \in C_{2}$ and $x \in C_{1}$

$$
\left\{\begin{array}{l}
\left\langle\rho T_{1}\left(x^{*}\right)+y^{*}-g_{1}\left(x^{*}\right), y-y^{*}\right\rangle+\rho^{\prime} \psi_{1}(y)-\rho^{\prime} \psi_{1}\left(y^{*}\right) \geq 0  \tag{9}\\
\left\langle\sigma T_{2}\left(y^{*}\right)+x^{*}-g_{2}\left(y^{*}\right), x-x^{*}\right\rangle+\sigma^{\prime} \psi_{2}(x)-\sigma^{\prime} \psi_{2}\left(x^{*}\right) \geq 0
\end{array}\right.
$$

(II) If $\eta_{1}(u, v)=\eta_{2}(u, v)=u-v, \psi_{1}(u)=I_{C_{1}}(u)$ and $\psi_{2}(u)=I_{C_{2}}(u)$, then SMGVIP (8) reduces to the following system of generalized variational inequalities:

Find $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that

$$
\begin{cases}\left\langle\rho T_{1}\left(x^{*}\right)+y^{*}-g_{1}\left(x^{*}\right), y-y^{*}\right\rangle \geq 0 \quad \text { for all } y \in C_{2}  \tag{10}\\ \left\langle\sigma T_{2}\left(y^{*}\right)+x^{*}-g_{2}\left(y^{*}\right), x-x^{*}\right\rangle \geq 0 \quad \text { for all } x \in C_{1} .\end{cases}
$$

(III) If $g_{1}=g_{2}=I, \eta_{1}(u, v)=\eta_{2}(u, v)=u-v, \psi_{1}(u)=I_{C_{1}}(u)$ and $\psi_{2}(u)=$ $I_{C_{2}}(u)$, then the SMGVIP (8) reduces to the following system of variational inequalities considered by Sahu [28]:

Find $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that

$$
\left\{\begin{array}{l}
\left\langle\rho T_{1}\left(x^{*}\right)+y^{*}-x^{*}, y-y^{*}\right\rangle \geq 0 \quad \text { for all } y \in C_{2}  \tag{11}\\
\left\langle\sigma T_{2}\left(y^{*}\right)+x^{*}-y^{*}, x-x^{*}\right\rangle \geq 0 \quad \text { for all } x \in C_{1}
\end{array}\right.
$$

The following lemma will be useful in equivalence formulation between system of variational inequalities and altering point problem:

Lemma 2.13. [10, 11] Let $\eta: H \times H \rightarrow H$ be $\tau$-Lipschitz continuous and $\delta$-strongly monotone such that $\eta(x, y)+\eta(y, x)=0$ for all $x, y \in H$ and for any given $x \in H$, the function $h(y, u)=\langle x-u, \eta(y, u)\rangle$ is $0-D Q C V$ in $y$. Let $\psi: H \rightarrow \mathbb{R} \cup\{+\infty\}$ be a lower semicontinuous and $\eta$ - subdifferentiable proper functional. Then, for any given $\rho>0$ and $x \in H$, there exists a unique $u \in H$ such that

$$
\langle u-x, \eta(y, u)\rangle \geq \rho \psi(u)-\rho \psi(y) \quad \text { for all } y \in H
$$

that is, $u=J_{\rho}^{\Delta \psi}(x)$ and $\eta$-proximal mapping $J_{\rho}^{\Delta \psi}$ of $\psi$ is $\frac{\tau}{\delta}$-Lipschitzian mapping.

By using Lemma 2.13, one can easily observe that the system of mixed generalized variational inequality problems (8) is equivalent to following altering point problem:

$$
\text { to find }\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2} \text { such that }\left\{\begin{array}{l}
x^{*}=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\sigma T_{2}\right]\left(y^{*}\right) ;  \tag{12}\\
y^{*}=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]\left(x^{*}\right),
\end{array}\right.
$$

that is, $x^{*} \in C_{1}$ and $y^{*} \in C_{2}$ are altering points of the mappings $S_{1}:=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\right.$ $\left.\rho T_{1}\right]$ and $S_{2}:=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\sigma T_{2}\right]$.

Following the idea of Sahu [28], we will consider the following parallel $S$ iteration process for the problem (8).

Algorithm 2.14. For any given $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, the iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=S_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S_{1}\left(x_{n}\right)\right]  \tag{13}\\
y_{n+1}=S_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2}\left(y_{n}\right)\right] \quad \text { for all } n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1), S_{1}:=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $S_{2}:=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\right.$ $\left.\sigma T_{2}\right]$.

Note that if $\eta_{1}(u, v)=\eta_{2}(u, v)=u-v$, then the $\eta$-proximal mapping $J_{\rho^{\prime}}^{\Delta \psi_{1}}$ is just the resolvent operator $J_{\psi_{1}}=\left(I+\rho^{\prime} \partial \psi_{1}\right)^{-1}$, the $\eta$-proximal mapping $J_{\sigma^{\prime}}^{\Delta \psi_{2}}$ is just the resolvent operator $J_{\psi_{2}}=\left(I+\sigma^{\prime} \partial \psi_{2}\right)^{-1}$. Therefore, we have the following particular parallel $S$-iterative algorithm for the problem (9):

Algorithm 2.15. For any given $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, the iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=U_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} U_{1}\left(x_{n}\right)\right]  \tag{14}\\
y_{n+1}=U_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} U_{2}\left(y_{n}\right)\right] \quad \text { for all } n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1), U_{1}=J_{\psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $U_{2}=J_{\psi_{2}}\left[g_{2}-\sigma T_{2}\right]$.
Algorithm 2.16. If $\eta_{1}(u, v)=\eta_{2}(u, v)=u-v, \psi_{1}(u)=I_{C_{1}}(u)$ and $\psi_{2}(u)=$ $I_{C_{2}}(u)$, then the resolvent operator $J_{\psi_{1}}$ is just the projection operator $P_{C_{1}}$ and $J_{\psi_{2}}$ is just the projection operator $P_{C_{2}}$. Consequently, we have the following algorithm for problem (10): For any given $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, the iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=V_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} V_{1}\left(x_{n}\right)\right],  \tag{15}\\
y_{n+1}=V_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} V_{2}\left(y_{n}\right)\right] \quad \text { for all } n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1), V_{1}=P_{C_{1}}\left[g_{1}-\rho T_{1}\right]$ and $V_{2}=P_{C_{2}}\left[g_{2}-\sigma T_{2}\right]$.
Algorithm 2.17. If $g_{1}=g_{2}=I$, then Algorithm 2.16 reduces to the following iterative Algorithm for the problem (11): For any given $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, the iterative sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is defined by

$$
\left\{\begin{array}{l}
x_{n+1}=W_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} W_{1}\left(x_{n}\right)\right],  \tag{16}\\
y_{n+1}=W_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} W_{2}\left(y_{n}\right)\right], \quad \text { for all } n \in \mathbb{N},
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1), W_{1}=P_{C_{1}}\left[I-\rho T_{1}\right]$ and $W_{2}=P_{C_{2}}\left[I-\sigma T_{2}\right]$.

## 3. Main results

First we study the convergence analysis of Mann iteration process for solving the SMGVIP (8).

Theorem 3.1. Let $C_{1}$ and $C_{2}$ be nonempty closed convex subsets of a real Hilbert space $H$. Let $T_{1}: C_{1} \rightarrow C_{2}$ and $T_{2}: C_{2} \rightarrow C_{1}$ be relaxed $\left(\gamma_{i}, r_{i}\right)$-cocoercive and $\mu_{i}$-Lipschitz continuous and let $g_{i}: H \rightarrow H$ be relaxed $\left(l_{i}, p_{i}\right)$-cocoercive and $\xi_{i}$ Lipschitz continuous $(i=1,2)$. Let $\eta_{i}: H \times H \rightarrow H$ be $\tau_{i}$-Lipschitz continuous and $\delta_{i}$ strongly monotone such that $\eta_{i}(x, y)+\eta_{i}(y, x)=0$ for all $x, y \in H$ and for any $x \in H$, the function $h_{i}(y, u)=\left\langle x-u, \eta_{i}(y, u)\right\rangle$ is $0-D Q C V$ in $y(i=1,2)$. Let $\psi_{i}$ be a lower semicontinuous $\eta_{i}$-subdifferentiable proper function $(i=1,2)$. Define $S_{1}=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $S_{2}=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\sigma T_{2}\right]$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$
be sequences in $C_{1}$ and $C_{2}$, respectively, generated by the following Mann type algorithm:

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2}\left(y_{n}\right)  \tag{17}\\
y_{n}=S_{1}\left(x_{n}\right), n \in \mathbb{N}
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $[0,1]$. Then, we have the followings:
(a) The mappings $S_{1}$ and $S_{2}$ are Lipschitz continuous with Lipschitz constants $\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)$ and $\frac{\tau_{1}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)$, respectively, where

$$
\begin{aligned}
\theta_{i} & =\sqrt{1+2 l_{i} \xi_{i}^{2}-2 p_{i}+\xi_{i}^{2}} \quad \text { and } \\
\kappa_{i} & =\sqrt{1+2 \rho \gamma_{i} \mu_{i}^{2}-2 \rho r_{i}+\rho^{2} \mu_{i}^{2}} \quad(i=1,2)
\end{aligned}
$$

(b) If $\tau_{i}\left(\theta_{i}+\kappa_{i}\right)<\delta_{i}(i=1,2)$, then there exists a unique point $\left(x^{*}, y^{*}\right) \in$ $C_{1} \times C_{2}$ which solves the SMGVIP (8).
(c) In addition, if $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\tau_{i}\left(\theta_{i}+\kappa_{i}\right)<\delta_{i}(i=1,2)$, then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converges strongly to $x^{*}$ and $y^{*}$, respectively.

Proof. (a) Let $x, y \in C_{1}$. By Lemma 2.13, we have

$$
\begin{align*}
& \left\|S_{1}(x)-S_{1}(y)\right\| \\
& =\left\|J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right](x)-J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right](y)\right\| \\
& \leq \frac{\tau_{1}}{\delta_{1}}\left\|\left[g_{1}-\rho T_{1}\right](x)-\left[g_{1}-\rho T_{1}\right](y)\right\|  \tag{18}\\
& \leq \frac{\tau_{1}}{\delta_{1}}\left\|x-y-\left(g_{1}(x)-g_{1}(y)\right)\right\|+\frac{\tau_{1}}{\delta_{1}}\left\|x-y-\rho\left(T_{1}(x)-T_{1}(y)\right)\right\| .
\end{align*}
$$

Observe that

$$
\begin{align*}
& \left\|x-y-\left(g_{1}(x)-g_{1}(y)\right)\right\|^{2} \\
& =\|x-y\|^{2}-2\left\langle x-y, g_{1}(x)-g_{1}(y)\right\rangle+\left\|g_{1}(x)-g_{1}(y)\right\|^{2} \\
& \leq\|x-y\|^{2}-2\left(-l_{1}\left\|g_{1}(x)-g_{1}(y)\right\|^{2}+p_{1}\|x-y\|^{2}\right)+\left\|g_{1}(x)-g_{1}(y)\right\|^{2}  \tag{19}\\
& \leq\|x-y\|^{2}+2 l_{1} \xi_{1}^{2}\|x-y\|^{2}-2 p_{1}\|x-y\|^{2}+\xi_{1}^{2}\|x-y\|^{2} \\
& =\left(1+2 l_{1} \xi_{1}^{2}-2 p_{1}+\xi_{1}^{2}\right)\|x-y\|^{2} \\
& =\theta_{1}^{2}\|x-y\|^{2}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|x-y-\rho\left(T_{1}(x)-T_{1}(y)\right)\right\|^{2} \\
& =\|x-y\|^{2}-2 \rho\left\langle x-y, T_{1}(x)-T_{1}(y)\right\rangle+\left\|T_{1}(x)-T_{1}(y)\right\|^{2} \\
& \leq\|x-y\|^{2}-2 \rho\left(-\gamma_{1}\left\|T_{1}(x)-T_{1}(y)\right\|^{2}+r_{1}\|x-y\|^{2}\right)+\left\|T_{1}(x)-T_{1}(y)\right\|^{2} \\
& \leq\|x-y\|^{2}+2 \rho \gamma_{1} \mu_{1}^{2}\|x-y\|^{2}-2 \rho r_{1}\|x-y\|^{2}+\mu_{1}^{2}\|x-y\|^{2}  \tag{20}\\
& =\left(1+2 \rho \gamma_{1} \mu_{1}^{2}-2 \rho r_{1}+\mu_{1}^{2}\right)\|x-y\|^{2} \\
& =\kappa_{1}^{2}\|x-y\|^{2} .
\end{align*}
$$

Using (19) and (20) in (18), we get

$$
\left\|S_{1}(x)-S_{1}(y)\right\| \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\|x-y\|
$$

Similarly, we can show that $S_{2}$ is $\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)$-Lipschitz continuous.
(b) Suppose that $\tau_{i}\left(\theta_{i}+\kappa_{i}\right)<\delta_{i}(i=1,2)$. It is clear from part (a) that mappings $S_{1}$ and $S_{2}$ are contraction mappings. Therefore, from Theorem 2.4, there exists a unique point $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ such that $x^{*}$ and $y^{*}$ are altering points of mappings $S_{1}$ and $S_{2}$. Thus, $\left(x^{*}, y^{*}\right)$ is the unique solution of the SMGVIP (8).
(c) Suppose that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\tau_{i}\left(\theta_{i}+k_{i}\right)<\delta_{i}(i=1,2)$. From (17), we have

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2} y_{n}-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n}\left\|S_{2} y_{n}-S_{1} y^{*}\right\|  \tag{21}\\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left\|y_{n}-y^{*}\right\|
\end{align*}
$$

and

$$
\begin{equation*}
\left\|y_{n}-y^{*}\right\|=\left\|S_{1} x_{n}-S_{1} x^{*}\right\| \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left\|x_{n}-x^{*}\right\| . \tag{22}
\end{equation*}
$$

Using (22) in (21), we get

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right) \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left\|x_{n}-x^{*}\right\|  \tag{23}\\
& =\left[1-\alpha_{n}\left(1-\frac{\tau_{1}}{\delta_{1}} \frac{\tau_{2}}{\delta_{2}}\left(\theta_{1}+\kappa_{1}\right)\left(\theta_{2}+\kappa_{2}\right)\right)\right]\left\|x_{n}-x^{*}\right\| .
\end{align*}
$$

Note that $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\frac{\tau_{1}}{\delta_{1}} \frac{\tau_{2}}{\delta_{2}}\left(\theta_{1}+\kappa_{1}\right)\left(\theta_{2}+\kappa_{2}\right)<1$. Therefore, from Lemma 2.12, we have $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. Hence, from (22) we obtain that $\lim _{n \rightarrow \infty} y_{n}=$ $y^{*}$.

Taking $C_{1}=C_{2}=C$ in Theorem 3.1, we have the following which can be also derived from [41]:

Corollary 3.2. Let $C$ be a closed convex subset of a real Hilbert space $H$ and let $\left(x^{*}, y^{*}\right)$ be the solution of the problem (8). Let $T_{i}: C \rightarrow C$ is relaxed $\left(\gamma_{i}, r_{i}\right)$ cocoercive and $\mu_{i}$-Lipschitz continuous and let $g_{i}: H \rightarrow H$ be relaxed $\left(l_{i}, p_{i}\right)$ cocoercive and $\xi_{i}$-Lipschitz continuous $(i=1,2)$. Let $\eta_{i}: H \times H \rightarrow H$ be $\tau_{i}$ Lipschitz continuous and $\delta_{i}$ strongly monotone such that $\eta_{i}(x, y)+\eta_{i}(y, x)=0$ for all $x, y \in H$ and for any $x \in H$, the function $h_{i}(y, u)=\left\langle x-u, \eta_{i}(y, u)\right\rangle$ is $0-D Q C V$ in $y(i=1,2)$. Let $\psi_{i}$ be a lower semicontinuous $\eta_{i}$-subdifferentiable proper function $(i=1,2)$. Define $S_{1}=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $S_{2}=J_{\sigma^{\prime}}^{\Delta \psi} \psi_{2}\left[g_{2}-\sigma T_{2}\right]$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by iterative algorithm (17). Then, we have the followings:
(a) The mappings $S_{1}$ and $S_{2}$ are Lipschitz continuous with Lipschitz constant $\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)$ and $\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)$, respectively, where

$$
\theta_{i}=\sqrt{1+2 l_{i} \xi_{i}^{2}-2 p_{i}+\xi_{i}^{2}} \text { and } \kappa_{i}=\sqrt{1+2 \rho \gamma_{i} \mu_{i}^{2}-2 \rho r_{i}+\rho^{2} \mu_{i}^{2}} \quad(i=1,2)
$$

(b) If $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ and $\tau_{i}\left(\theta_{i}+\kappa_{i}\right)<\delta_{i}(i=1,2)$, then the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converges strongly to $x^{*}$ and $y^{*}$, respectively.

Now we study convergence analysis of parallel $S$-iteration process defined by (13).

Theorem 3.3. Let $C_{1}$ and $C_{2}$ be nonempty closed convex subsets of $H$. Let $T_{1}: C_{1} \rightarrow C_{2}$ be relaxed $\left(\gamma_{1}, r_{1}\right)$-cocoercive, $\mu_{1}$-Lipschitz continuous and let $T_{2}: C_{2} \rightarrow C_{1}$ be relaxed $\left(\gamma_{2}, r_{2}\right)$-cocoercive, $\mu_{2}$-Lipschitz continuous. Let $g_{i}:$ $H \rightarrow H$ be single valued relaxed $\left(l_{i}, p_{i}\right)$-cocoercive, $\xi_{i}$-Lipschitz continuous and let $\eta_{i}: H \times H \rightarrow H$ be $\tau_{i}$-Lipschitz continuous and $\delta_{i}$-strongly monotone such that $\eta_{i}(x, y)+\eta_{i}(y, x)=0$ for all $x, y \in H$ and for any given $x \in H$, the function $h_{i}(y, u)=\left\langle x-u, \eta_{i}(y, u)\right\rangle$ is $0-D Q C V$ in $y(i=1,2)$. Let $\psi_{i}$ be a lower semicontinuous $\eta_{i}$-subdifferentiable proper function $(i=1,2)$.. Define $S_{1}:=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $S_{2}:=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\sigma T_{2}\right]$. Then we have the following:
(a) The mappings $S_{1}$ and $S_{2}$ are $\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)$ and $\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)$-Lipschitzian, respectively, where

$$
\theta_{i}=\sqrt{1+2 l_{i} \xi_{i}^{2}-2 p_{i}+\xi_{i}^{2}} \text { and } \kappa_{i}=\sqrt{1+2 \rho \gamma_{i} \mu_{i}^{2}-2 \rho r_{i}+\rho^{2} \mu_{i}^{2}} \quad(i=1,2)
$$

(b) If $\tau_{i}\left(\theta_{i}+\kappa_{i}\right)<\delta_{i}(i=1,2)$, then there exists a unique point $\left(x^{*}, y^{*}\right) \in$ $C_{1} \times C_{2}$, which solves the SMGVIP (8).
(c) In addition, if $\max \left\{\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right), \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\right\} \leq k<1$, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by iterative process (13) converges strongly to the point $\left(x^{*}, y^{*}\right)$.

Proof. Parts (a) and (b) follows from Theorem 3.1..
(c) Suppose that $\max \left\{\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right), \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\right\} \leq k<1$. From (13) and part (a), we have

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\| \\
& =\left\|S_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S_{1}\left(x_{n}\right)\right]-x^{*}\right\| \\
& =\left\|S_{2}\left[\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S_{1}\left(x_{n}\right)\right]-S_{2}\left(y^{*}\right)\right\| \\
& \leq \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left\|\left(1-\alpha_{n}\right) y_{n}+\alpha_{n} S_{1}\left(x_{n}\right)-y^{*}\right\|  \tag{24}\\
& \leq \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left(1-\alpha_{n}\right)\left\|y_{n}-y^{*}\right\|+\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right) \alpha_{n}\left\|S_{1}\left(x_{n}\right)-S_{1}\left(x^{*}\right)\right\| \\
& \leq \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left(1-\alpha_{n}\right)\left\|y_{n}-y^{*}\right\|+\frac{\tau_{1} \tau_{2}}{\delta_{1} \delta_{2}}\left(\theta_{1}+\kappa_{1}\right)\left(\theta_{2}+\kappa_{2}\right) \alpha_{n}\left\|x_{n}-x^{*}\right\| .
\end{align*}
$$

Again from (13) and part (b), we get

$$
\begin{align*}
& \left\|y_{n+1}-y^{*}\right\| \\
& =\left\|S_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2}\left(y_{n}\right)\right]-y^{*}\right\| \\
& =\left\|S_{1}\left[\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2}\left(y_{n}\right)\right]-S_{1}\left(x^{*}\right)\right\| \\
& \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left\|\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} S_{2}\left(y_{n}\right)-x^{*}\right\|  \tag{25}\\
& \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right) \alpha_{n}\left\|S_{2} y_{n}-S_{2} y^{*}\right\| \\
& \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\frac{\tau_{1} \tau_{2}}{\delta_{1} \delta_{2}}\left(\theta_{1}+\kappa_{1}\right)\left(\theta_{2}+\kappa_{2}\right) \alpha_{n}\left\|y_{n}-y^{*}\right\| .
\end{align*}
$$

Adding (24) and (25), we get

$$
\begin{align*}
& \left\|x_{n+1}-x^{*}\right\|+\left\|y_{n+1}-y^{*}\right\| \\
& \leq \frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left(1-\alpha_{n}\left(1-\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\right)\right)\left\|x_{n}-x^{*}\right\|  \tag{26}\\
& \quad+\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left(1-\alpha_{n}\left(1-\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\right)\right)\left\|y_{n}-y^{*}\right\| .
\end{align*}
$$

Note that $\max \left\{\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right), \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\right\} \leq k<1$ and $\alpha_{n} \in(0,1)$ for all $n \in \mathbb{N}$.
Hence

$$
\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\left(1-\alpha_{n}\left(1-\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\right)\right) \leq k\left[1-(1-k) \alpha_{n}\right] \leq k
$$

Similarly, we get

$$
\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}+\kappa_{2}\right)\left(1-\alpha_{n}\left(1-\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}+\kappa_{1}\right)\right)\right) \leq k\left[1-(1-k) \alpha_{n}\right] \leq k
$$

Then, (26) reduces to

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\|+\left\|y_{n+1}-y^{*}\right\| \leq k\left[1-(1-k) \alpha_{n}\right]\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n}-y^{*}\right\|\right) \tag{27}
\end{equation*}
$$

Define the norm $\|\cdot\|_{1}$ on $H \times H$ by $\|(x, y)\|_{1}=\|x\|+\|y\|$ for all $(x, y) \in H \times H$.
Note that $\left(H \times H,\|\cdot\|_{1}\right)$ is a Banach space. From (27), we get

$$
\left\|\left(x_{n+1}, y_{n+1}\right)-\left(x^{*}, y^{*}\right)\right\|_{1} \leq k\left[1-(1-k) \alpha_{n}\right]\left\|\left(x_{n}, y_{n}\right)-\left(x^{*}, y^{*}\right)\right\|_{1}
$$

Since $k\left[1-(1-k) \alpha_{n}\right] \leq k<1$, we obtain that $\lim _{n \rightarrow \infty}\left\|\left(x_{n}, y_{n}\right)-\left(x^{*}, y^{*}\right)\right\|_{1}=0$. Hence, we get that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-y^{*}\right\|=0
$$

Therefore, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converges to $x^{*}$ and $y^{*}$, respectively.
Remark 3.1. For convergence of Mann iteration process defined by (17) to unique solution of the SMGVIP (8), the condition $\sum_{n=0}^{\infty} \alpha_{n}=\infty$ is required. But by the parallel $S$-iteration process defined by (13) such condition does not required.

Corollary 3.4. Let $C_{1}$ and $C_{2}$ be nonempty closed convex subsets of $H$.. Let $T_{1}$ : $C_{1} \rightarrow C_{2}$ be $r_{1}$-strongly monotone, $\mu_{1}$-Lipschitz continuous and let $T_{2}: C_{2} \rightarrow C_{1}$ be $r_{2}$-strongly monotone, $\mu_{2}$-Lipschitz continuous. Let $g_{i}: H \rightarrow H$ be single valued $p_{i}$-strongly monotone, $\xi_{i}$-Lipschitz continuous and let $\eta_{i}: H \times H \rightarrow H$ be $\tau_{i}$-Lipschitz continuous and $\delta_{i}$-strongly monotone such that $\eta_{i}(x, y)+\eta_{i}(y, x)=0$ for all $x, y \in H$ and for any given $x \in H$, the function $h_{i}(y, u)=\left\langle x-u, \eta_{i}(y, u)\right\rangle$ is $0-D Q C V$ in $y(i=1,2)$. Let $\psi_{i}$ be a lower semicontinuous $\eta_{i}$-subdifferentiable proper function $(i=1,2)$. Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be the sequence generated by Algorithm 2.14 and $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ be the solution of (8). Define $S_{1}:=J_{\rho^{\prime}}^{\Delta \psi_{1}}\left[g_{1}-\rho T_{1}\right]$ and $S_{2}:=J_{\sigma^{\prime}}^{\Delta \psi_{2}}\left[g_{2}-\sigma T_{2}\right]$. Then we have the following:
(a) Mapping $S_{1}$ and $S_{2}$ are $\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}^{\prime}+\kappa_{1}^{\prime}\right)$ and $\frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}^{\prime}+\kappa_{2}^{\prime}\right)$ - Lipschitzian, respectively, where

$$
\theta_{i}^{\prime}=\sqrt{1-2 p_{i}+\xi_{i}^{2}} \text { and } \kappa_{i}^{\prime}=\sqrt{1-2 \rho r_{i}+\rho^{2} \mu_{i}^{2}} \quad(i=1,2) .
$$

(b) If $\tau_{i}\left(\theta_{i}^{\prime}+\kappa_{i}^{\prime}\right)<\delta_{i}(i=1,2)$, then there exists a unique point $\left(x^{*}, y^{*}\right) \in$ $C_{1} \times C_{2}$ such that $x^{*}$ and $y^{*}$ are altering points of mappings $S_{1}$ and $S_{2}$.
(c) In addition, if $\max \left\{\frac{\tau_{1}}{\delta_{1}}\left(\theta_{1}^{\prime}+\kappa_{1}^{\prime}\right), \frac{\tau_{2}}{\delta_{2}}\left(\theta_{2}^{\prime}+\kappa_{2}^{\prime}\right)\right\} \leq k<1$, then the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by iterative process (13) converges strongly to the points $\left(x^{*}, y^{*}\right)$.

Proof. If $\gamma=0$, then relaxed $(\gamma, r)$-cocoercive mapping is $r$-strongly monotone mapping. Therefore proof follows from Theorem 3.3.

Taking $g_{1}=g_{2}=I, \eta_{1}(u, v)=\eta_{2}(u, v)=u-v, \psi_{1}(u)=I_{C_{1}}(u)$ and $\psi_{2}(u)=$ $I_{C_{2}}(u)$ in Theorem 3.3, we get the following:

Corollary 3.5. [28, Theorem 4.4] Let $C_{i}$ be a nonempty closed convex subset of a real Hilbert space $H$ and $T_{i}: C_{i} \rightarrow H$ be a $\mu_{i}$-Lipschitzian and $r_{i}$-strongly monotone operator with $0<\rho$ and $\sigma<\frac{2 r_{i}}{\mu_{i}^{2}}$ for $i=1,2$. Then, the system of variational inequalities (11) has a unique solution $\left(x^{*}, y^{*}\right) \in C_{1} \times C_{2}$ and for $\alpha_{n}=\alpha \in(0,1)$ for all $n \in \mathbb{N}$ and arbitrary $\left(x_{1}, y_{1}\right) \in C_{1} \times C_{2}$, the sequence $\left\{\left(x_{n}, y_{n}\right)\right\}$ generated by iteration process (16) converges strongly to $\left(x^{*}, y^{*}\right)$.

## Acknowledgment

The authors would like to thank the referees for useful comments and suggestions.

## References

1. R.P. Agarwal, D. O'Regan, and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79.
2. R.P. Agarwal, D. O'Regan, and D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Series: Topological Fixed Point Theory and Its Applications, 6, Springer, New York, 2009.
3. E. Allevi, A. Gnudi, and I.V. Konnov, Generalized vector variational inequalities over product sets, Nonlinear Anal. 47 (2001), 573-582.
4. Q.H. Ansari, S. Schaible, and J.C. Yao, System of vector equilibrium problems and its applications, J. Optim. Theory Appl. 107 (2000), 547-557.
5. Q.H. Ansari and J.C. Yao, A fixed point theorem and its applications to a system of variational inequalities, Bull. Australian Math. Soc. 59 (1999), 433-442.
6. M. Bianchi, Pseudo P-monotone operators and variational inequalities, Tech. Rep. 6, Istituto di econometria e Matematica per le Decisioni Economiche, Universita Cattolica del Sacro Cuore, Milan, Italy, 1993.
7. S.S. Chang, H.W.J. Lee, and C.K. Chan, Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (2007), 329-334.
8. Y.J. Cho, Y.P. Fang, N.J. Huang, and H.J. Hwang, Algorithms for systems of nonlinear variational inequalities, J. Korean Math. Soc. 41 (2004), 489-499.
9. G. Cohen and F. Chaplais, Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms, J. Optim. Theory Appl. 59 (1988), 369-390.
10. X.P. Ding, Generalized quasi-variational-like inclusions with nonconvex functionals, Appl. Math. Comput. 122 (2001), 267-282.
11. X.P. Ding and C.L. Luo, Perturbed proximal point algorithms for general quasi-variationallike inclusions, J. Comput. Appl. Math. 113 (2000), 153-165.
12. Y.P. Fang, N.J. Huang, Y.J. Cao, and S.M. Kang, Stable iterative algorithms for a class of general nonlinear variational inequalities, Adv. Nonlinear Var. Inequal. 5 (2002), 1-9.
13. K. Guo, Y. Jiang, and S.Q. Feng, A parallel resolvent method for solving a system of nonlinear mixed variational inequalities, J. Inequal. Appl. 2013 (2013), Paper No. 509, 9 pages.
14. Z. He and F. Gu, Generalized system for relaxed cocoercive mixed variational inequalities in Hilbert spaces, Appl. Math. Comput. 214 (2009), 26-30.
15. Z.Y. Huang and M.A. Noor, An explicit projection method for a system of nonlinear variational inequalities with different ( $\gamma, r$ )-cocoercive mappings, Appl. Math. Comput. 190 (2007), 356-361.
16. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
17. G. Kassay and J. Kolumban, System of multi-valued variational inequalities, Publ. Math. Debrecen 54 (1999), 267-279.
18. J.K. Kim and D.S. Kim, A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces, J. Convex Anal. 11 (2004), 235-243.
19. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications, Academic press, New York, 1980.
20. V. Kumar, A. Latif, A. Rafiq, and N. Hussain, S-iteration process for quasi-contractive mappings, J. Ineqal. Appl. 2013 (2013), Paper No. 206, 15 pages.
21. W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
22. P. Narin, A resolvent operator technique for approximate solving of generalized system mixed variational inequality and fixed point problems, Appl. Math. Lett. 23 (2010), 440445.
23. M.A. Noor, Nonconvex functions and variational inequalities, J. Optim. Theory Appl. 87 (1995), 615-630.
24. J.S. Pang, Asymmetric variational inequality problems over product sets: applications and iterative methods, Math. Program. 31 (1985), 206-219.
25. R. Pant and R. Shukla, Approximating fixed points of generalized $\alpha$-nonexpansive mappings in Banach spaces, Numerical Funct. Anal. Optim. 38 (2017), 248-266.
26. E. Picard, Mémoire sur la théorie des équations aux derivees partielles et la méthode des approximations successives, J. Math. Pures Appl. 6 (1890), 145-210.
27. D.R. Sahu, Applications of the $S$-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12 (2011), 187-204.
28. D.R. Sahu, Altering points and applications, Nonlinear Stud. 21 (2014), 349-365.
29. D.R. Sahu, S.M. Kang, and A. Kumar, Convergence analysis of parallel S-iteration process for system of generalized variational inequalities, J. Function Spaces 2017 (2017), Article ID 5847096, 10 pages.
30. D.R. Sahu and A. Petruşel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Anal. 74 (2011), 6012-6023.
31. D.R. Sahu, V. Sagar, and K.K. Singh, Convergence of generalized Newton method using $S$-operator in Hilbert spaces, In: Algebra and Analysis: Theory and Applications, Narosa Publishing House Pvt. Ltd., New Delhi, India, 2015.
32. D.R. Sahu, K.K. Singh, and V.K. Singh, S-iteration process of Newton-like and applications, In: Algebra and Analysis: Theory and Applications, Narosa Publishing House Pvt. Ltd., New Delhi, India, 2015.
33. D.R. Sahu, J.C. Yao, V.K. Singh, and S. Kumar, Semilocal convergence analysis of Siteration process of Newton-Kantorovich like in Banach spaces, J. Optim. Theory Appl. 172 (2017), 102-127.
34. G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, C. R. Acad. Sci. Paris 258 (1964), 4413-4416.
35. R. Suparatulatorn, W. Cholamjiak, and S. Suantai, A modified $S$-iteration process for $G$ nonexpansive mappings in Banach spaces with graphs, Numer. Algor. 77 (2018), 479-490.
36. R.U. Verma, On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-Line 3 (1999), 65-68.
37. R.U. Verma, Projection methods, algorithms, and a new system of nonlinear variational inequalities, Comput. Math. Appl. 41 (2001), 1025-1031.
38. R.U. Verma, Iterative algorithms and a new system of nonlinear quasi-variational inequalities, Adv. Nonlinear Var. Ineqal. 4 (2001), 117-124.
39. R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (2005), 1286-1292.
40. R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and projection methods, J. Optim. Theory Appl. 121 (2004), 203-210.
41. B. Wan and X. Zhan, A proximal point algorithm for a system of generalized mixed variational inequalities, J. Syst. Sci. Complex 25 (2012), 964-972.

Chahn Yong Jung is currently a professor at Gyeongsang National University. His research interest includes business mathematics.

Department of Business Administration, Gyeongsang National University, Jinju 52828, Korea.
e-mail: bb5734@gnu.ac.kr
Satyendra Kumar is currently a senior research fellow at Banaras Hindu University. His research interests include fixed point theory and nonlinear analysis.
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
e-mail: saty.maths1986@gmail.com
Shin Min Kang is currently a professor at Gyeongsang National University. His research interests include fixed point theory and nonlinear analysis.
Department of Mathematics and RINS, Gyeongsang National University, Jinju 52828, Korea.
e-mail: smkang@gnu.ac.kr

