
J. Appl. Math. & Informatics Vol. 36(2018), No. 5 - 6, pp. 381 - 396
https://doi.org/10.14317/jami.2018.381

CONVERGENCE ANALYSIS OF PARALLEL S-ITERATION

PROCESS FOR A SYSTEM OF VARIATIONAL

INEQUALITIES USING ALTERING POINTS

CHAHN YONG JUNG, SATYENDRA KUMAR, SHIN MIN KANG∗

Abstract. In this paper we have considered a system of mixed general-
ized variational inequality problems defined on two different domains in a
Hilbert space. It has been shown that the solution of a system of mixed

generalized variational inequality problems is equivalent to altering point
formulation of some mappings. A new parallel S-iteration type process has
been considered which converges strongly to the solution of a system of
mixed generalized variational inequality problems.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respec-
tively. Let C be a nonempty subset of H and T : C → H an operator. The
variational inequality problem V I(C, T ) is to find x∗ ∈ C such that

⟨Tx∗, x− x∗⟩ ≥ 0 for all x ∈ C. (1)

The set of solutions of variational inequality V I(C, T ) is denoted by Ω[V I(C, T )],
i.e.,

Ω[V I(C, T )] := {x∗ ∈ C : ⟨Tx∗, x− x∗⟩ ≥ 0 for all x ∈ C}.
It is well known that the variational inequality problem (1) is equivalent to the
following fixed point problem:

to find x∗ ∈ C such that x∗ = PC(I − λT )x∗,

where λ > 0 is a constant and PC is a projection mapping from H onto C.
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The classical variational inequality problem was initially introduced by Stam-
pacchia [19, 34] in 1964. The variational inequality problem is one of the very
useful and interesting problem in the literature. Many of the problems of pure
and applied sciences can be formulated in form of variational inequality problem.
Several existence results, iterative algorithms, extensions and generalizations for
the variational inequality problems has been studied by many authors in past
years (see [3–15, 17, 18, 22–24, 28, 36–41]). One of the important generalization
of classical variational inequality problem is a system of variational inequal-
ity problems which has been studied by many authors in various frameworks
(see [3–6,9, 17,24,36]).

In 2001, Verma [37] introduced and studied a new system of monotone vari-
ational inequalities and developed some iterative algorithms for approximation
of solutions of considered problems in Hilbert spaces. Since then the system
of monotone variational inequalities has been generalized and studied by many
authors in different ways (see, [7, 8, 12,14,18,22,38–40]).

In 2012, Wan and Zhan [41] considered a new system of generalized mixed
variational inequality problems (GMVIP) in Hilbert spaces. By using concept
of η-subdifferential and η-proximal mapping they demonstrated that GMVIP is
equivalent to a fixed point problem. They suggested some iterative technique to
solve the system of generalized mixed variational inequalities. In 2013, Guo et al.
[13] introduced a system of generalized nonlinear mixed variational inequalities
and obtained the approximate solution by using the resolvent parallel technique.

In 2014, Sahu [28] introduced the notion of altering points and studied exis-
tence and approximation results for altering points. It is remarkable that many
problems of nonlinear analysis such as best proximity pairs, a system of nonlin-
ear variational inequalities and a system of hierarchical variational inequalities
are equivalent to altering point formulation of some mappings (see [28]).

It is well known that S-iteration process introduced by Agarwal et al. [1]
is a faster method to find the fixed point of contraction operator than the Pi-
card [26], Mann [21], and Ishikawa [16] iteration processes (see [2, 20, 30]). The
S-iteration process is more applicable than the Picard, Mann, and Ishikawa iter-
ation processes because it is faster for contraction mappings and also works for
nonexpansive type mappings (see [25,35]). Because of its super convergence, the
S-iteration process attracted many researchers as an alternate iteration process
for solving various nonlinear problems (see [25,29,31–33,35]). In 2011, Sahu [27]
introduced the notion of S-operator as follows:

Let C be a nonempty convex subset of a vector space X and T : C → C
an operator. Then, an operator Gα,β,T : C → C is said to be an S-operator
generated by α ∈ (0, 1], β ∈ (0, 1) and T if

Gα,β,T = (1− α)T + αT ((1− β)I + βT ),

and an operatorGβ,T : C → C is said to be an S-operator generated by β ∈ (0, 1)
and T if

Gβ,T = T ((1− β)I + βT ).
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It is easy to see that Gα,β,T is contraction with contractivity factor k(1−αβ(1−
k)) if T is a contraction with contractivity factor k and Gα,β,T is nonexpansive
if T is a nonexpansive.

Motivated by S-operator, Sahu [27] introduced normal S-iteration process as
follows:

Let C be a nonempty convex subset of a normed space X and T : C → C
an operator. Then, for arbitrary x1 ∈ C, the normal S-iteration process [27] is
defined by

xn+1 = T [(1− αn)xn + αnTxn], n ∈ N,
where {αn} is a real sequence in (0, 1).

Using the idea of normal S-iteration process, Sahu [28] introduced a parallel
S-iteration process for finding altering points of mappings T1 and T2 as follows:

Let C1 and C2 be two nonempty closed convex subsets of a Banach space
X. Let T1 : C1 → C2 and T2 : C2 → C1 be two mappings. For α ∈ (0, 1) and
arbitrary (x1, y1) ∈ C1 × C2, parallel S-iteration process is defined by{

xn+1 = T2[(1− α)yn + αT1xn];

yn+1 = T1[(1− α)xn + αT2yn], n ∈ N.
(2)

In [41], Wan and Zhan considered the following generalized mixed variational
inequality problems in Hilbert spaces:

Let C be a closed and convex set in a Hilbert space H. Let Ti, ηi : H×H → H
and gi : H → H be single-valued mappings and let ψi : H → R ∪ {∞} be lower
semicontinuous, ηi-subdifferentiable and proper function on H (i = 1, 2). Find
x∗, y∗ ∈ H such that, for all x ∈ H{

⟨ρT1(y∗, x∗) + x∗ − g1(y
∗), η1(x, x

∗)⟩+ ρ′ψ1(x)− ρ′ψ1(x
∗) ≥ 0;

⟨σT2(x∗, y∗) + y∗ − g2(x
∗), η2(x, y

∗)⟩+ σ′ψ2(x)− σ′ψ2(y
∗) ≥ 0,

(3)

where the parameters ρ, ρ′, σ, σ′ > 0 are constants. Under suitable conditions on
mappings and parameters, they proved that the sequences {xn}, {yn} generated
by following Mann type iteration process{

xn+1 = (1− αn)xn + αnJ
∆ψ1

ρ′ [g1(yn)− ρT1(yn, xn)];

yn = J∆ψ2

σ′ [g2(xn)− σT2(xn, yn)], n ∈ N,
(4)

where {αn} is a sequence in [0, 1], converges strongly to x∗ and y∗, respectively.
Recently, Sahu et al. [29] defined a new system of generalized variational

inequalities on two closed convex subsets of a real Hilbert space and established
a strong convergence result using altering points technique.

Motivated and inspired by works of Wan and Zhan [41], Guo et al. [13],
Sahu [28] and Sahu et al. [29], the main purpose of this paper is to introduce a
new system of mixed generalized variational inequality problems (8) in Hilbert
space and to show its equivalence altering point formulation. We introduce a
parallel S-iteration process to approximate the solution of considered system of
mixed generalized variational inequalities. Our result significantly extends the
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corresponding result of Wan and Zhan [41] for parallel S-iteration process and
generalizes the result of Sahu [28].

2. Preliminaries

Throughout this paper, H is a real Hilbert space with inner product ⟨·, ·⟩ and
norm ∥·∥ , respectively. We denote by I the identity operator of H. Also, we
denote by → the strong convergence. The symbol N stands for the set of all
natural numbers.

Let C be a nonempty subset of H. A mapping T : C → C is said to be
(1) β-strongly monotone if there exists a constant β > 0 such that

⟨T (x)− T (y), x− y⟩ ≥ β∥x− y∥2 for all x, y ∈ C,

(2) µ-cocoercive if there exists µ > 0 such that

⟨T (x)− T (y), x− y⟩ ≥ µ∥T (x)− T (y)∥2 for all x, y ∈ C,

(3) relaxed γ-cocoercive if there exists a constant γ > 0 such that

⟨T (x)− T (y), x− y⟩ ≥ (−γ)∥T (x)− T (y)∥2 for all x, y ∈ C,

(4) relaxed (γ, r)-cocoercive if there exist constants γ ≥ 0 and r > 0 such that

⟨T (x)− T (y), x− y⟩ ≥ (−γ)∥T (x)− T (y)∥2 + r∥x− y∥2 for all x, y ∈ C.

It is clear that every β-strongly monotone mapping is β-expansive and when
β = 1, it is expansive. Every µ-cocoercive mapping is 1

µ -Lipschitz continuous

mapping. If γ = 0, then relaxed (γ, r)-cocoercive mapping is r-strongly mono-
tone. Thus, the class of relaxed (γ, r)-cocoercive mappings is more general than
that of the class of strongly monotone mappings.

Definition 2.1. [28] Let C1, C2, ..., Ck be nonempty subsets of a metric space
X and T1 : C1 → C2, T2 : C2 → C3, ..., Tk : Ck → C1 be mappings. Then x1 ∈
C1, x2 ∈ C2, ..., xk ∈ Ck are said to be altering points of mappings T1, T2, ..., Tk
if T1x1 = x2, T2x2 = x3, ..., Tkxk = x1.

In particular for k = 2, the point (x∗, y∗) ∈ C1 × C2 is altering point of
mappings T1 : C1 → C2 and T2 : C2 → C1 if{

T1(x
∗) = y∗,

T2(y
∗) = x∗.

(5)

Thus x∗ and y∗ are altering points of T1 and T2 if (5) holds. The set of altering
points of mappings T1 : C1 → C2 and T2 : C2 → C1 is denoted by Alt(T1, T2)
i.e.,

Alt(T1, T2) = {(x∗, y∗) ∈ C1 × C2 : T1(x
∗) = y∗ and T2(y

∗) = x∗}.

Example 2.2. [28] Let X = C1 = C2 = [0, 1] and define T1, T2 : X → X by
T1(x) = 1− x and T2(x) = x2, x ∈ X. Note T2T1(x) = T2(1− x) = (1− x)2 and

T1T2(x) = T1(x
2) = 1 − x2 for all x ∈ X. Then x∗ =

√
5−1
2 and y∗ = 3−

√
5

2 are
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altering points of T1 and T2. The graphical representation of altering points of
mappings T1 : C1 → C2 and T2 : C2 → C1 is given in Figure 1.
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Figure 1. Graphical representation of altering points

Example 2.3. Let X = ℓ2, C1 = {(x1, x2, ..., xn, ...) ∈ ℓ1 : |xn| ≤ 1
2 , ∀n ∈ N}

and C2 = {(x1, x2, ..., xn, ...) ∈ ℓ1 : |xn| ≤ 1, ∀n ∈ N}. Define T1 : C1 → C2 by
T1(x1, x2, ..., xn, ...) = (0, x1, x2, ..., xn−1, ...) for all (x1, x2, ..., xn, ...) ∈ C1 and

T2 : C2 → C1 by T2(x1, x2, ..., xn, ...) = (
x2
1

2 ,
x2
2

2 , ...,
x2
n

2 , ...) for all (x1, x2, ..., xn, ...)
∈ C2. Note that the mapping T2T1 : C1 → C1 defined by T2T1(x1, x2, ..., xn, ...)

= (0,
x2
1

2 ,
x2
2

2 , ...,
x2
n−1

2 , ...) for all (x1, x2, ..., xn, ...) ∈ C1 is a contraction mapping
and the points x∗ = (0, 0, ..., 0, ...) ∈ C1 and y∗ = (0, 0, ..., 0, ...) ∈ C2 are altering
points of mappings T1 and T2. The point x

∗ = (0, 0, ..., 0, ...) ∈ C1 is also a fixed
point of mapping T2T1 : C1 → C1.

The following existence and approximation results for altering points are given
in Sahu [28].

Theorem 2.4. [28, Theorem 3.1] Let C1 and C2 be nonempty closed subsets
of a complete metric space X and let T1 : C1 → C2 and T2 : C2 → C1 be two
Lipschitz continuous mappings with Lipschitz constants k1 and k2, respectively
such that k1k2 < 1. Then we have the following:

(a) There exists a unique point (x∗, y∗) ∈ C1 × C2 such that x∗ and y∗ are
altering points of mappings T1 and T2.

(b) For arbitrary x0 ∈ C1, a sequence {(xn, yn)} in C1 × C2 generated by{
yn = T1xn,

xn+1 = T2yn for all n ∈ N0 = N ∪ {0}
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converges to (x∗, y∗).

Theorem 2.5. [28, Theorem 3.6] Let C1 and C2 be two nonempty closed con-
vex subsets of a Banach space X. Let T1 : C1 → C2 and T2 : C2 → C1 be
two Lipschitz continuous mappings with Lipschitz constants k1 and k2 such that
k1k2 < 1. Then the sequence {(xn, yn)} in C1 × C2 generated by parallel S-
iteration process (2) converges strongly to a unique point (x∗, y∗) ∈ C1×C2 such
that x∗ and y∗ are altering points of mappings T1 and T2.

Definition 2.6. [10, 11] Let η : H × H → H be a single-valued mapping. A
proper function ψ : H → R ∪ {+∞} is said to be η-subdifferentiable at a point
x ∈ H if there exists a point x∗ ∈ H such that

ψ(y)− ψ(x) ≥ ⟨x∗, η(y, x)⟩ for all y ∈ H,

where x∗ is called an η-subgradient of ψ at x. The set of all η-subgradients of ψ
at x is denoted by ∆ψ(x). The mapping ∆ψ : H → 2H defined by

∆ψ(x) = {x∗ ∈ H : ψ(y)− ψ(x) ≥ ⟨x∗, η(y, x)⟩ for all y ∈ H} (6)

is said to be η-subdifferential of ψ at x.

Remark 2.1. If η(y, x) = y − x for all y, x ∈ H, then Definition 2.6 reduces to
the usual definition of subdifferential of a functional ψ. If ψ is defferentiable at
x ∈ H and satisfies

ψ(x+ λη(y, x)) ≤ λψ(y) + (1− λ)ψ(x) for all y ∈ H, λ ∈ [0, 1],

then ψ is η-subdifferentiable at x ∈ H.

Definition 2.7. [10, 11] Let ψ : H → R ∪ {+∞} be a proper functional. For
any given x ∈ H and any ρ > 0, if there exists a mapping η : H ×H → H and
a unique point u ∈ H such that

⟨u− x, η(y, u)⟩ ≥ ρψ(u)− ρψ(y) for all y ∈ H, (7)

then the mapping x 7→ u, denoted by J△ψ
ρ (x), is said to be an η-proximal

mapping of ψ.

Definition 2.8. [7, 15] A two-variable mapping T : C × C → H is said to
be strongly relaxed (γ, r)-cocoercive in the first variable if there exist constants
γ, r > 0 such that, for all x, y ∈ C

⟨T (x, u)−T (y, v), x−y⟩ ≥ (−γ)∥T (x, u)−T (y, v)∥2+r∥x−y∥2 for all u, v ∈ C.

Definition 2.9. [41] A two-variable mapping T : C × C → H is said to be
relaxed (γ, r)-cocoercive in the first variable if there exist constants γ, r > 0 such
that, for all x, y ∈ C

⟨T (x, u)−T (y, u), x− y⟩ ≥ (−γ)∥T (x, u)−T (y, u)∥2 + r∥x− y∥2 for all u ∈ C.

If T is the univariate operator, then the relaxed (γ, r)-cocoercive in the first
variable of two-variable mapping T (·, ·) reduces to the relaxed (γ, r)-cocoercive
of univariate operator T .
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Definition 2.10. [23] A mapping η : H ×H → H is said to be
(1) δ-strongly monotone if there exists a constant δ > 0 such that

⟨η(x, y), x− y⟩ ≥ δ∥x− y∥2 for all x, y ∈ H,

(2) τ -Lipschitz continuous if there exists a constant τ > 0 such that

∥η(x, y)∥ ≤ τ∥x− y∥ for all x, y ∈ H.

Definition 2.11. [10, 11] A function f : H × H → R ∪ {+∞} is said to
be 0-diagonally quasi-concave (in short, 0-DQCV) in x if for any finite set
{x1, x2, · · · , xn} ⊂ H and for any y =

∑n
i=1 λixi with λi ≥ 0 and

∑n
i=1 λi = 1,

min
1≤i≤n

f(xi, y) ≤ 0.

Lemma 2.12. [7] Let {an}, {bn} and {cn} be three nonnegative real sequences
satisfying the following conditions:

an+1 ≤ (1− λn)an + bn + cn for all n ≥ n0,

where n0 is some nonnegative integer, λn ∈ (0, 1) with
∑∞
n=0 λn = ∞, bn =

o(λn) and
∑∞
n=0 cn ≤ ∞. Then limn→∞ an = 0.

Let H be a real Hilbert space and let C1, C2 be two nonempty closed convex
subsets of H. Let T1 : C1 → C2 and T2 : C2 → C1 be two mappings, gi : H → H
be single valued mappings and ψi : H → R∪{+∞} be lower semicontinuous and
η-subdifferentiable function (i = 1, 2). Consider the following system of mixed
generalized variational inequality problems (SMGVIP):

Find (x∗, y∗) ∈ C1 × C2 such that, for all y ∈ C2 and x ∈ C1{
⟨ρT1(x∗) + y∗ − g1(x

∗), η1(y, y
∗)⟩+ ρ′ψ1(y)− ρ′ψ1(y

∗) ≥ 0;

⟨σT2(y∗) + x∗ − g2(y
∗), η2(x, x

∗)⟩+ σ′ψ2(x)− σ′ψ2(x
∗) ≥ 0,

(8)

where σ > 0, σ′ > 0, ρ > 0 and ρ′ > 0 are constants.
Define

IC1(u) =

{
0 if u ∈ C1,

+∞, otherwise,
IC2(u) =

{
0 if u ∈ C2,

+∞, otherwise.

Now consider the following particular cases of the problem (8):
(I) If η1(u, v) = η2(u, v) = u − v, then the SMGVIP (8) is equivalent to the

following system of generalized mixed variational inequalities:
Find (x∗, y∗) ∈ C1 × C2 such that, for all y ∈ C2 and x ∈ C1{

⟨ρT1(x∗) + y∗ − g1(x
∗), y − y∗⟩+ ρ′ψ1(y)− ρ′ψ1(y

∗) ≥ 0;

⟨σT2(y∗) + x∗ − g2(y
∗), x− x∗⟩+ σ′ψ2(x)− σ′ψ2(x

∗) ≥ 0.
(9)

(II) If η1(u, v) = η2(u, v) = u − v, ψ1(u) = IC1(u) and ψ2(u) = IC2(u),
then SMGVIP (8) reduces to the following system of generalized variational
inequalities:
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Find (x∗, y∗) ∈ C1 × C2 such that{
⟨ρT1(x∗) + y∗ − g1(x

∗), y − y∗⟩ ≥ 0 for all y ∈ C2;

⟨σT2(y∗) + x∗ − g2(y
∗), x− x∗⟩ ≥ 0 for all x ∈ C1.

(10)

(III) If g1 = g2 = I, η1(u, v) = η2(u, v) = u− v, ψ1(u) = IC1(u) and ψ2(u) =
IC2

(u), then the SMGVIP (8) reduces to the following system of variational
inequalities considered by Sahu [28]:

Find (x∗, y∗) ∈ C1 × C2 such that{
⟨ρT1(x∗) + y∗ − x∗, y − y∗⟩ ≥ 0 for all y ∈ C2;

⟨σT2(y∗) + x∗ − y∗, x− x∗⟩ ≥ 0 for all x ∈ C1.
(11)

The following lemma will be useful in equivalence formulation between system
of variational inequalities and altering point problem:

Lemma 2.13. [10, 11] Let η : H × H → H be τ -Lipschitz continuous and
δ-strongly monotone such that η(x, y) + η(y, x) = 0 for all x, y ∈ H and for
any given x ∈ H, the function h(y, u) = ⟨x − u, η(y, u)⟩ is 0-DQCV in y. Let
ψ : H → R ∪ {+∞} be a lower semicontinuous and η- subdifferentiable proper
functional. Then, for any given ρ > 0 and x ∈ H, there exists a unique u ∈ H
such that

⟨u− x, η(y, u)⟩ ≥ ρψ(u)− ρψ(y) for all y ∈ H,

that is, u = J∆ψ
ρ (x) and η-proximal mapping J∆ψ

ρ of ψ is τ
δ -Lipschitzian map-

ping.

By using Lemma 2.13, one can easily observe that the system of mixed gen-
eralized variational inequality problems (8) is equivalent to following altering
point problem:

to find (x∗, y∗) ∈ C1 × C2 such that

{
x∗ = J∆ψ2

σ′ [g2 − σT2](y
∗);

y∗ = J∆ψ1

ρ′ [g1 − ρT1](x
∗),

(12)

that is, x∗ ∈ C1 and y
∗ ∈ C2 are altering points of the mappings S1 := J∆ψ1

ρ′ [g1−
ρT1] and S2 := J∆ψ2

σ′ [g2 − σT2].
Following the idea of Sahu [28], we will consider the following parallel S-

iteration process for the problem (8).

Algorithm 2.14. For any given (x1, y1) ∈ C1 × C2, the iterative sequence
{(xn, yn)} is defined by{

xn+1 = S2[(1− αn)yn + αnS1(xn)],

yn+1 = S1[(1− αn)xn + αnS2(yn)] for all n ∈ N,
(13)

where {αn} is a sequence in (0, 1), S1 := J∆ψ1

ρ′ [g1 − ρT1] and S2 := J∆ψ2

σ′ [g2 −
σT2].
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Note that if η1(u, v) = η2(u, v) = u−v, then the η-proximal mapping J∆ψ1

ρ′ is

just the resolvent operator Jψ1 = (I + ρ′∂ψ1)
−1, the η-proximal mapping J∆ψ2

σ′

is just the resolvent operator Jψ2 = (I + σ′∂ψ2)
−1. Therefore, we have the

following particular parallel S-iterative algorithm for the problem (9):

Algorithm 2.15. For any given (x1, y1) ∈ C1 × C2, the iterative sequence
{(xn, yn)} is defined by{

xn+1 = U2[(1− αn)yn + αnU1(xn)],

yn+1 = U1[(1− αn)xn + αnU2(yn)] for all n ∈ N,
(14)

where {αn} is a sequence in (0, 1), U1 = Jψ1 [g1 − ρT1] and U2 = Jψ2 [g2 − σT2].

Algorithm 2.16. If η1(u, v) = η2(u, v) = u − v, ψ1(u) = IC1
(u) and ψ2(u) =

IC2(u), then the resolvent operator Jψ1 is just the projection operator PC1 and
Jψ2 is just the projection operator PC2 . Consequently, we have the following
algorithm for problem (10): For any given (x1, y1) ∈ C1 × C2, the iterative
sequence {(xn, yn)} is defined by{

xn+1 = V2[(1− αn)yn + αnV1(xn)],

yn+1 = V1[(1− αn)xn + αnV2(yn)] for all n ∈ N,
(15)

where {αn} is a sequence in (0, 1), V1 = PC1 [g1 − ρT1] and V2 = PC2 [g2 − σT2].

Algorithm 2.17. If g1 = g2 = I, then Algorithm 2.16 reduces to the following
iterative Algorithm for the problem (11): For any given (x1, y1) ∈ C1 × C2, the
iterative sequence {(xn, yn)} is defined by{

xn+1 =W2[(1− αn)yn + αnW1(xn)],

yn+1 =W1[(1− αn)xn + αnW2(yn)], for all n ∈ N,
(16)

where {αn} is a sequence in (0, 1), W1 = PC1 [I − ρT1] and W2 = PC2 [I − σT2].

3. Main results

First we study the convergence analysis of Mann iteration process for solving
the SMGVIP (8).

Theorem 3.1. Let C1 and C2 be nonempty closed convex subsets of a real Hilbert
space H. Let T1 : C1 → C2 and T2 : C2 → C1 be relaxed (γi, ri)-cocoercive and
µi-Lipschitz continuous and let gi : H → H be relaxed (li, pi)-cocoercive and ξi-
Lipschitz continuous (i = 1, 2). Let ηi : H ×H → H be τi-Lipschitz continuous
and δi strongly monotone such that ηi(x, y) + ηi(y, x) = 0 for all x, y ∈ H and
for any x ∈ H, the function hi(y, u) = ⟨x−u, ηi(y, u)⟩ is 0-DQCV in y (i = 1, 2).
Let ψi be a lower semicontinuous ηi-subdifferentiable proper function (i = 1, 2).

Define S1 = J∆ψ1

ρ′ [g1 − ρT1] and S2 = J∆ψ2

σ′ [g2 − σT2]. Let {xn} and {yn}
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be sequences in C1 and C2, respectively, generated by the following Mann type
algorithm: {

xn+1 = (1− αn)xn + αnS2(yn);

yn = S1(xn), n ∈ N,
(17)

where {αn} is a sequence in [0, 1]. Then, we have the followings:
(a) The mappings S1 and S2 are Lipschitz continuous with Lipschitz constants

τ1
δ1
(θ1 + κ1) and

τ1
δ2
(θ2 + κ2), respectively, where

θi =
√
1 + 2liξ2i − 2pi + ξ2i and

κi =
√
1 + 2ργiµ2

i − 2ρri + ρ2µ2
i (i = 1, 2).

(b) If τi(θi + κi) < δi (i = 1, 2), then there exists a unique point (x∗, y∗) ∈
C1 × C2 which solves the SMGVIP (8).

(c) In addition, if
∑∞
n=0 αn = ∞ and τi(θi + κi) < δi (i = 1, 2), then the

sequences {xn} and {yn} converges strongly to x∗ and y∗, respectively.

Proof. (a) Let x, y ∈ C1. By Lemma 2.13, we have

∥S1(x)− S1(y)∥

= ∥J∆ψ1

ρ′ [g1 − ρT1](x)− J∆ψ1

ρ′ [g1 − ρT1](y)∥

≤ τ1
δ1

∥[g1 − ρT1](x)− [g1 − ρT1](y)∥

≤ τ1
δ1

∥x− y − (g1(x)− g1(y))∥+
τ1
δ1

∥x− y − ρ(T1(x)− T1(y))∥.

(18)

Observe that

∥x− y − (g1(x)− g1(y))∥2

= ∥x− y∥2 − 2⟨x− y, g1(x)− g1(y)⟩+ ∥g1(x)− g1(y)∥2

≤ ∥x− y∥2 − 2(−l1∥g1(x)− g1(y)∥2 + p1∥x− y∥2) + ∥g1(x)− g1(y)∥2

≤ ∥x− y∥2 + 2l1ξ
2
1∥x− y∥2 − 2p1∥x− y∥2 + ξ21∥x− y∥2

= (1 + 2l1ξ
2
1 − 2p1 + ξ21)∥x− y∥2

= θ21∥x− y∥2

(19)

and

∥x− y − ρ(T1(x)− T1(y))∥2

= ∥x− y∥2 − 2ρ⟨x− y, T1(x)− T1(y)⟩+ ∥T1(x)− T1(y)∥2

≤ ∥x− y∥2 − 2ρ(−γ1∥T1(x)− T1(y)∥2 + r1∥x− y∥2) + ∥T1(x)− T1(y)∥2

≤ ∥x− y∥2 + 2ργ1µ
2
1∥x− y∥2 − 2ρr1∥x− y∥2 + µ2

1∥x− y∥2

= (1 + 2ργ1µ
2
1 − 2ρr1 + µ2

1)∥x− y∥2

= κ21∥x− y∥2.

(20)
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Using (19) and (20) in (18), we get

∥S1(x)− S1(y)∥ ≤ τ1
δ1

(θ1 + κ1)∥x− y∥.

Similarly, we can show that S2 is τ2
δ2
(θ2 + κ2)-Lipschitz continuous.

(b) Suppose that τi(θi+κi) < δi (i = 1, 2). It is clear from part (a) that map-
pings S1 and S2 are contraction mappings. Therefore, from Theorem 2.4, there
exists a unique point (x∗, y∗) ∈ C1 ×C2 such that x∗ and y∗ are altering points
of mappings S1 and S2. Thus, (x

∗, y∗) is the unique solution of the SMGVIP
(8).

(c) Suppose that
∑∞
n=0 αn = ∞ and τi(θi + ki) < δi (i = 1, 2). From (17), we

have
∥xn+1 − x∗∥ = ∥(1− αn)xn + αnS2yn − x∗∥

≤ (1− αn)∥xn − x∗∥+ αn∥S2yn − S1y
∗∥

≤ (1− αn)∥xn − x∗∥+ αn
τ2
δ2

(θ2 + κ2)∥yn − y∗∥
(21)

and

∥yn − y∗∥ = ∥S1xn − S1x
∗∥ ≤ τ1

δ1
(θ1 + κ1)∥xn − x∗∥. (22)

Using (22) in (21), we get

∥xn+1 − x∗∥

≤ (1− αn)∥xn − x∗∥+ αn
τ1
δ1

(θ1 + κ1)
τ2
δ2

(θ2 + κ2)∥xn − x∗∥

=

[
1− αn

(
1− τ1

δ1

τ2
δ2

(θ1 + κ1)(θ2 + κ2)

)]
∥xn − x∗∥.

(23)

Note that
∑∞
n=0 αn = ∞ and τ1

δ1
τ2
δ2
(θ1+κ1)(θ2+κ2) < 1. Therefore, from Lemma

2.12, we have limn→∞ xn = x∗. Hence, from (22) we obtain that limn→∞ yn =
y∗. �

Taking C1 = C2 = C in Theorem 3.1, we have the following which can be
also derived from [41]:

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H and
let (x∗, y∗) be the solution of the problem (8). Let Ti : C → C is relaxed (γi, ri)-
cocoercive and µi-Lipschitz continuous and let gi : H → H be relaxed (li, pi)-
cocoercive and ξi-Lipschitz continuous (i = 1, 2). Let ηi : H × H → H be τi-
Lipschitz continuous and δi strongly monotone such that ηi(x, y) + ηi(y, x) = 0
for all x, y ∈ H and for any x ∈ H, the function hi(y, u) = ⟨x − u, ηi(y, u)⟩ is
0-DQCV in y (i = 1, 2). Let ψi be a lower semicontinuous ηi-subdifferentiable

proper function (i = 1, 2). Define S1 = J∆ψ1

ρ′ [g1−ρT1] and S2 = J∆ψ2

σ′ [g2−σT2].
Let {xn} and {yn} be sequences generated by iterative algorithm (17). Then, we
have the followings:
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(a) The mappings S1 and S2 are Lipschitz continuous with Lipschitz constant
τ1
δ1
(θ1 + κ1) and

τ2
δ2
(θ2 + κ2), respectively, where

θi =
√
1 + 2liξ2i − 2pi + ξ2i and κi =

√
1 + 2ργiµ2

i − 2ρri + ρ2µ2
i (i = 1, 2).

(b) If
∑∞
n=0 αn = ∞ and τi(θi + κi) < δi (i = 1, 2), then the sequences {xn}

and {yn} converges strongly to x∗ and y∗, respectively.

Now we study convergence analysis of parallel S-iteration process defined by
(13).

Theorem 3.3. Let C1 and C2 be nonempty closed convex subsets of H. Let
T1 : C1 → C2 be relaxed (γ1, r1)-cocoercive, µ1-Lipschitz continuous and let
T2 : C2 → C1 be relaxed (γ2, r2)-cocoercive, µ2-Lipschitz continuous. Let gi :
H → H be single valued relaxed (li, pi)-cocoercive, ξi-Lipschitz continuous and
let ηi : H × H → H be τi-Lipschitz continuous and δi-strongly monotone such
that ηi(x, y) + ηi(y, x) = 0 for all x, y ∈ H and for any given x ∈ H, the
function hi(y, u) = ⟨x− u, ηi(y, u)⟩ is 0-DQCV in y (i = 1, 2). Let ψi be a
lower semicontinuous ηi-subdifferentiable proper function (i = 1, 2).. Define

S1 := J∆ψ1

ρ′ [g1 − ρT1] and S2 := J∆ψ2

σ′ [g2 − σT2]. Then we have the following:

(a) The mappings S1 and S2 are τ1
δ1
(θ1 + κ1) and τ2

δ2
(θ2 + κ2)-Lipschitzian,

respectively, where

θi =
√
1 + 2liξ2i − 2pi + ξ2i and κi =

√
1 + 2ργiµ2

i − 2ρri + ρ2µ2
i (i = 1, 2).

(b) If τi(θi + κi) < δi (i = 1, 2), then there exists a unique point (x∗, y∗) ∈
C1 × C2, which solves the SMGVIP (8).

(c) In addition, if max{ τ1δ1 (θ1 + κ1),
τ2
δ2
(θ2 + κ2)} ≤ k < 1, then the se-

quence {(xn, yn)} generated by iterative process (13) converges strongly to the
point (x∗, y∗).

Proof. Parts (a) and (b) follows from Theorem 3.1..
(c) Suppose that max{ τ1δ1 (θ1 + κ1),

τ2
δ2
(θ2 + κ2)} ≤ k < 1. From (13) and part

(a), we have

∥xn+1 − x∗∥
= ∥S2[(1− αn)yn + αnS1(xn)]− x∗∥
= ∥S2[(1− αn)yn + αnS1(xn)]− S2(y

∗)∥

≤ τ2
δ2

(θ2 + κ2)∥(1− αn)yn + αnS1(xn)− y∗∥

≤ τ2
δ2

(θ2 + κ2)(1− αn)∥yn − y∗∥+ τ2
δ2

(θ2 + κ2)αn∥S1(xn)− S1(x
∗)∥

≤ τ2
δ2

(θ2 + κ2)(1− αn)∥yn − y∗∥+ τ1τ2
δ1δ2

(θ1 + κ1)(θ2 + κ2)αn∥xn − x∗∥.

(24)
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Again from (13) and part (b), we get

∥yn+1 − y∗∥
= ∥S1[(1− αn)xn + αnS2(yn)]− y∗∥
= ∥S1[(1− αn)xn + αnS2(yn)]− S1(x

∗)∥

≤ τ1
δ1

(θ1 + κ1)∥(1− αn)xn + αnS2(yn)− x∗∥

≤ τ1
δ1

(θ1 + κ1)(1− αn)∥xn − x∗∥+ τ1
δ1

(θ1 + κ1)αn∥S2yn − S2y
∗∥

≤ τ1
δ1

(θ1 + κ1)(1− αn)∥xn − x∗∥+ τ1τ2
δ1δ2

(θ1 + κ1)(θ2 + κ2)αn∥yn − y∗∥.

(25)

Adding (24) and (25), we get

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥

≤ τ1
δ1

(θ1 + κ1)

(
1− αn

(
1− τ2

δ2
(θ2 + κ2)

))
∥xn − x∗∥

+
τ2
δ2

(θ2 + κ2)

(
1− αn

(
1− τ1

δ1
(θ1 + κ1)

))
∥yn − y∗∥.

(26)

Note that max{ τ1δ1 (θ1+κ1),
τ2
δ2
(θ2+κ2)} ≤ k < 1 and αn ∈ (0, 1) for all n ∈ N.

Hence

τ1
δ1

(θ1 + κ1)

(
1− αn

(
1− τ2

δ2
(θ2 + κ2)

))
≤ k[1− (1− k)αn] ≤ k.

Similarly, we get

τ2
δ2

(θ2 + κ2)

(
1− αn

(
1− τ1

δ1
(θ1 + κ1)

))
≤ k[1− (1− k)αn] ≤ k.

Then, (26) reduces to

∥xn+1 − x∗∥+ ∥yn+1 − y∗∥ ≤ k[1− (1− k)αn](∥xn − x∗∥+ ∥yn − y∗∥). (27)

Define the norm ∥·∥1 on H×H by ∥(x, y)∥1 = ∥x∥+∥y∥ for all (x, y) ∈ H×H.
Note that (H ×H, ∥ · ∥1) is a Banach space. From (27), we get

∥(xn+1, yn+1)− (x∗, y∗)∥1 ≤ k[1− (1− k)αn]∥(xn, yn)− (x∗, y∗)∥1.

Since k[1−(1−k)αn] ≤ k < 1, we obtain that limn→∞ ∥(xn, yn)−(x∗, y∗)∥1 = 0.
Hence, we get that

lim
n→∞

∥xn − x∗∥ = lim
n→∞

∥yn − y∗∥ = 0.

Therefore, {xn} and {yn} converges to x∗ and y∗, respectively. �

Remark 3.1. For convergence of Mann iteration process defined by (17) to
unique solution of the SMGVIP (8), the condition

∑∞
n=0 αn = ∞ is required.

But by the parallel S-iteration process defined by (13) such condition does not
required.
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Corollary 3.4. Let C1 and C2 be nonempty closed convex subsets of H.. Let T1 :
C1 → C2 be r1-strongly monotone, µ1-Lipschitz continuous and let T2 : C2 → C1

be r2-strongly monotone, µ2-Lipschitz continuous. Let gi : H → H be single
valued pi-strongly monotone, ξi-Lipschitz continuous and let ηi : H ×H → H be
τi-Lipschitz continuous and δi-strongly monotone such that ηi(x, y)+ηi(y, x) = 0
for all x, y ∈ H and for any given x ∈ H, the function hi(y, u) = ⟨x− u, ηi(y, u)⟩
is 0-DQCV in y (i = 1, 2). Let ψi be a lower semicontinuous ηi-subdifferentiable
proper function (i = 1, 2). Let {(xn, yn)} be the sequence generated by Algorithm

2.14 and (x∗, y∗) ∈ C1 × C2 be the solution of (8). Define S1 := J∆ψ1

ρ′ [g1 − ρT1]

and S2 := J∆ψ2

σ′ [g2 − σT2]. Then we have the following:
(a) Mapping S1 and S2 are τ1

δ1
(θ′1 +κ′1) and

τ2
δ2
(θ′2 +κ′2)- Lipschitzian, respec-

tively, where

θ′i =
√
1− 2pi + ξ2i and κ′i =

√
1− 2ρri + ρ2µ2

i (i = 1, 2).

(b) If τi(θ
′
i + κ′i) < δi (i = 1, 2), then there exists a unique point (x∗, y∗) ∈

C1 × C2 such that x∗ and y∗ are altering points of mappings S1 and S2.
(c) In addition, if max{ τ1δ1 (θ

′
1 + κ′1),

τ2
δ2
(θ′2 + κ′2)} ≤ k < 1, then the sequence

{(xn, yn)} generated by iterative process (13) converges strongly to the points
(x∗, y∗).

Proof. If γ = 0, then relaxed (γ, r)-cocoercive mapping is r-strongly monotone
mapping. Therefore proof follows from Theorem 3.3. �

Taking g1 = g2 = I, η1(u, v) = η2(u, v) = u− v, ψ1(u) = IC1(u) and ψ2(u) =
IC2(u) in Theorem 3.3, we get the following:

Corollary 3.5. [28, Theorem 4.4] Let Ci be a nonempty closed convex subset
of a real Hilbert space H and Ti : Ci → H be a µi-Lipschitzian and ri-strongly
monotone operator with 0 < ρ and σ < 2ri

µ2
i

for i = 1, 2. Then, the system of

variational inequalities (11) has a unique solution (x∗, y∗) ∈ C1 × C2 and for
αn = α ∈ (0, 1) for all n ∈ N and arbitrary (x1, y1) ∈ C1 × C2, the sequence
{(xn, yn)} generated by iteration process (16) converges strongly to (x∗, y∗).
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