DOI QR코드

DOI QR Code

RNA-Binding Proteins in Amyotrophic Lateral Sclerosis

  • Zhao, Melody (Genetics and Genome Biology Program, The Hospital for Sick Children) ;
  • Kim, Jihye Rachel (Genetics and Genome Biology Program, The Hospital for Sick Children) ;
  • van Bruggen, Rebekah (Genetics and Genome Biology Program, The Hospital for Sick Children) ;
  • Park, Jeehye (Genetics and Genome Biology Program, The Hospital for Sick Children)
  • Received : 2018.05.31
  • Accepted : 2018.08.10
  • Published : 2018.09.30

Abstract

Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.

Keywords

References

  1. Aguilera-Gomez, A., and Rabouille, C. (2017). Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila. Dev. Biol. 428, 310-317. https://doi.org/10.1016/j.ydbio.2017.03.029
  2. Al-Chalabi, A., van den Berg, L.H., and Veldink, J. (2017). Gene discovery in amyotrophic lateral sclerosis: implications for clinical management. Nat. Rev. Neurol. 13, 96-104. https://doi.org/10.1038/nrneurol.2016.182
  3. Alarcon, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015). HNRNPA2B1 is a mediator of m(6)A-dependent nuclear RNA processing events. Cell 162, 1299-1308. https://doi.org/10.1016/j.cell.2015.08.011
  4. Anderson, P., and Kedersha, N. (2009). RNA granules: posttranscriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430-436. https://doi.org/10.1038/nrm2694
  5. Andersson, M.K., Stahlberg, A., Arvidsson, Y., Olofsson, A., Semb, H., Stenman, G., Nilsson, O., and Aman, P. (2008). The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 9, 37. https://doi.org/10.1186/1471-2121-9-37
  6. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y., et al. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602-611. https://doi.org/10.1016/j.bbrc.2006.10.093
  7. Auburger, G., Sen, N.E., Meierhofer, D., Basak, A.N., and Gitler, A.D. (2017). Efficient prevention of neurodegenerative diseases by depletion of starvation response factor ataxin-2. Trends Neurosci. 40, 507-516. https://doi.org/10.1016/j.tins.2017.06.004
  8. Aznarez, I., Barash, Y., Shai, O., He, D., Zielenski, J., Tsui, L.C., Parkinson, J., Frey, B.J., Rommens, J.M., and Blencowe, B.J. (2008). A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation. Genome Res. 18, 1247-1258. https://doi.org/10.1101/gr.073155.107
  9. Bakthavachalu, B., Huelsmeier, J., Sudhakaran, I.P., Hillebrand, J., Singh, A., Petrauskas, A., Thiagarajan, D., Sankaranarayanan, M., Mizoue, L., Anderson, E.N., et al. (2018). RNP-granule assembly via ataxin-2 disordered domains is required for long-term memory and neurodegeneration. Neuron 98, 754-766 e754. https://doi.org/10.1016/j.neuron.2018.04.032
  10. Banerjee, A., Vest, K.E., Pavlath, G.K., and Corbett, A.H. (2017). Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Res. 45, 10706-10725. https://doi.org/10.1093/nar/gkx786
  11. Baumer, D., Hilton, D., Paine, S.M., Turner, M.R., Lowe, J., Talbot, K., and Ansorge, O. (2010). Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 75, 611-618. https://doi.org/10.1212/WNL.0b013e3181ed9cde
  12. Becker, L.A., Huang, B., Bieri, G., Ma, R., Knowles, D.A., Jafar-Nejad, P., Messing, J., Kim, H.J., Soriano, A., Auburger, G., et al. (2017). Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544, 367-371. https://doi.org/10.1038/nature22038
  13. Belgrader, P., Dey, R., and Berezney, R. (1991). Molecular cloning of matrin 3. A 125-kilodalton protein of the nuclear matrix contains an extensive acidic domain. J. Biol. Chem. 266, 9893-9899.
  14. Berezney, R., and Coffey, D.S. (1974). Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60, 1410-1417. https://doi.org/10.1016/0006-291X(74)90355-6
  15. Berson, A., Barbash, S., Shaltiel, G., Goll, Y., Hanin, G., Greenberg, D.S., Ketzef, M., Becker, A.J., Friedman, A., and Soreq, H. (2012). Cholinergic-associated loss of hnRNP-A/B in Alzheimer's disease impairs cortical splicing and cognitive function in mice. EMBO Mol. Med. 4, 730-742. https://doi.org/10.1002/emmm.201100995
  16. Bertolotti, A., Lutz, Y., Heard, D.J., Chambon, P., and Tora, L. (1996). hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 15, 5022-5031. https://doi.org/10.1002/j.1460-2075.1996.tb00882.x
  17. Boehringer, A., Garcia-Mansfield, K., Singh, G., Bakkar, N., Pirrotte, P., and Bowser, R. (2017). ALS associated mutations in Matrin 3 alter protein-protein interactions and impede mRNA Nuclear Export. Sci. Rep. 7, 14529. https://doi.org/10.1038/s41598-017-14924-6
  18. Bosco, D.A., Lemay, N., Ko, H.K., Zhou, H., Burke, C., Kwiatkowski, T.J., Jr., Sapp, P., McKenna-Yasek, D., Brown, R.H., Jr., and Hayward, L.J. (2010). Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 19, 4160-4175. https://doi.org/10.1093/hmg/ddq335
  19. Brangwynne, C.P., Eckmann, C.R., Courson, D.S., Rybarska, A., Hoege, C., Gharakhani, J., Julicher, F., and Hyman, A.A. (2009). Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729-1732. https://doi.org/10.1126/science.1172046
  20. Buchan, J.R., and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941. https://doi.org/10.1016/j.molcel.2009.11.020
  21. Buratti, E., and Baralle, F.E. (2001). Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337-36343. https://doi.org/10.1074/jbc.M104236200
  22. Buratti, E., and Baralle, F.E. (2008). Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci. 13, 867-878. https://doi.org/10.2741/2727
  23. Burd, C.G., and Dreyfuss, G. (1994). RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 13, 1197-1204. https://doi.org/10.1002/j.1460-2075.1994.tb06369.x
  24. Cammas, A., Pileur, F., Bonnal, S., Lewis, S.M., Leveque, N., Holcik, M., and Vagner, S. (2007). Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. Mol. Biol. Cell 18, 5048-5059. https://doi.org/10.1091/mbc.e07-06-0603
  25. Carmo-Silva, S., Nobrega, C., Pereira de Almeida, L., and Cavadas, C. (2017). Unraveling the role of ataxin-2 in metabolism. Trends Endocrinol. Metab. 28, 309-318. https://doi.org/10.1016/j.tem.2016.12.006
  26. Chabot, B., Blanchette, M., Lapierre, I., and La Branche, H. (1997). An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol. Cell Biol. 17, 1776-1786. https://doi.org/10.1128/MCB.17.4.1776
  27. Chong, P.A., and Forman-Kay, J.D. (2016). A new phase in ALS Research. Structure 24, 1435-1436. https://doi.org/10.1016/j.str.2016.08.003
  28. Clower, C.V., Chatterjee, D., Wang, Z., Cantley, L.C., Vander Heiden, M.G., and Krainer, A.R. (2010). The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism. Proc. Natl. Acad. Sci. USA 107, 1894-1899. https://doi.org/10.1073/pnas.0914845107
  29. Coelho, M.B., Attig, J., Bellora, N., Konig, J., Hallegger, M., Kayikci, M., Eyras, E., Ule, J., and Smith, C.W. (2015). Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB. EMBO J. 34, 653-668. https://doi.org/10.15252/embj.201489852
  30. Colombrita, C., Zennaro, E., Fallini, C., Weber, M., Sommacal, A., Buratti, E., Silani, V., and Ratti, A. (2009). TDP-43 is recruited to stress granules in conditions of oxidative insult. J. Neurochem. 111, 1051-1061. https://doi.org/10.1111/j.1471-4159.2009.06383.x
  31. Conforti, F.L., Spataro, R., Sproviero, W., Mazzei, R., Cavalcanti, F., Condino, F., Simone, I.L., Logroscino, G., Patitucci, A., Magariello, A., et al. (2012). Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology 79, 2315-2320. https://doi.org/10.1212/WNL.0b013e318278b618
  32. Conicella, A.E., Zerze, G.H., Mittal, J., and Fawzi, N.L. (2016). ALS mutations disrupt phase separation mediated by ${\alpha}$-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24, 1537-1549. https://doi.org/10.1016/j.str.2016.07.007
  33. Couthouis, J., Hart, M.P., Shorter, J., DeJesus-Hernandez, M., Erion, R., Oristano, R., Liu, A.X., Ramos, D., Jethava, N., Hosangadi, D., et al. (2011). A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl. Acad. Sci. USA 108, 20881-20890. https://doi.org/10.1073/pnas.1109434108
  34. Couthouis, J., Hart, M.P., Erion, R., King, O.D., Diaz, Z., Nakaya, T., Ibrahim, F., Kim, H.J., Mojsilovic-Petrovic, J., Panossian, S., et al. (2012). Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 2899-2911. https://doi.org/10.1093/hmg/dds116
  35. Couthouis, J., Raphael, A.R., Daneshjou, R., and Gitler, A.D. (2014). Targeted exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS Genet. 10, e1004704. https://doi.org/10.1371/journal.pgen.1004704
  36. Crozat, A., Aman, P., Mandahl, N., and Ron, D. (1993). Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640-644. https://doi.org/10.1038/363640a0
  37. De Santis, R., Santini, L., Colantoni, A., Peruzzi, G., de Turris, V., Alfano, V., Bozzoni, I., and Rosa, A. (2017). FUS Mutant Human Motoneurons Display Altered Transcriptome and microRNA Pathways with Implications for ALS Pathogenesis. Stem Cell Rep. 9, 1450-1462. https://doi.org/10.1016/j.stemcr.2017.09.004
  38. Del Gatto-Konczak, F., Bourgeois, C.F., Le Guiner, C., Kister, L., Gesnel, M.C., Stevenin, J., and Breathnach, R. (2000). The RNA binding protein TIA-1 is a novel mammalian splicing regulator acting through intron sequences adjacent to a 5' splice site. Mol. Cell Biol. 20, 6287-6299. https://doi.org/10.1128/MCB.20.17.6287-6299.2000
  39. Delattre, O., Zucman, J., Plougastel, B., Desmaze, C., Melot, T., Peter, M., Kovar, H., Joubert, I., de Jong, P., Rouleau, G., et al. (1992). Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 359, 162-165. https://doi.org/10.1038/359162a0
  40. Dember, L.M., Kim, N.D., Liu, K.Q., and Anderson, P. (1996). Individual RNA recognition motifs of TIA-1 and TIAR have different RNA binding specificities. J. Biol. Chem. 271, 2783-2788. https://doi.org/10.1074/jbc.271.5.2783
  41. Dixon, D.A., Balch, G.C., Kedersha, N., Anderson, P., Zimmerman, G.A., Beauchamp, R.D., and Prescott, S.M. (2003). Regulation of cyclooxygenase-2 expression by the translational silencer TIA-1. J. Exp. Med. 198, 475-481. https://doi.org/10.1084/jem.20030616
  42. Dreyfuss, G., Matunis, M.J., Pinol-Roma, S., and Burd, C.G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289-321. https://doi.org/10.1146/annurev.bi.62.070193.001445
  43. Dreyfuss, G., Kim, V.N., and Kataoka, N. (2002). Messenger-RNAbinding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195-205. https://doi.org/10.1038/nrm760
  44. Duggimpudi, S., Larsson, E., Nabhani, S., Borkhardt, A., and Hoell, J.I. (2015). The cell cycle regulator CCDC6 is a key target of RNA-binding protein EWS. PLoS One 10, e0119066. https://doi.org/10.1371/journal.pone.0119066
  45. Elden, A.C., Kim, H.J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069-1075. https://doi.org/10.1038/nature09320
  46. Farg, M.A., Soo, K.Y., Warraich, S.T., Sundaramoorthy, V., Blair, I.P., and Atkin, J.D. (2013). Ataxin-2 interacts with FUS and intermediatelength polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 717-728. https://doi.org/10.1093/hmg/dds479
  47. Forch, P., Puig, O., Kedersha, N., Martinez, C., Granneman, S., Seraphin, B., Anderson, P., and Valcarcel, J. (2000). The apoptosispromoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol. Cell 6, 1089-1098. https://doi.org/10.1016/S1097-2765(00)00107-6
  48. Gallego-Iradi, M.C., Clare, A.M., Brown, H.H., Janus, C., Lewis, J., and Borchelt, D.R. (2015). Subcellular localization of matrin 3 containing mutations associated with ALS and distal myopathy. PLoS One 10, e0142144. https://doi.org/10.1371/journal.pone.0142144
  49. Gao, Y., Tatavarty, V., Korza, G., Levin, M.K., and Carson, J.H. (2008). Multiplexed dendritic targeting of alpha calcium calmodulindependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein RNAs by the A2 pathway. Mol. Biol. Cell 19, 2311-2327. https://doi.org/10.1091/mbc.e07-09-0914
  50. Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L.M., and Anderson, P. (2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 15, 5383-5398. https://doi.org/10.1091/mbc.e04-08-0715
  51. Guerreiro, R., Bras, J., and Hardy, J. (2015). SnapShot: Genetics of ALS and FTD. Cell 160, 798-798 e791. https://doi.org/10.1016/j.cell.2015.01.052
  52. Guil, S., and Caceres, J.F. (2007). The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591-596. https://doi.org/10.1038/nsmb1250
  53. Guil, S., Long, J.C., and Caceres, J.F. (2006). hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol. Cell Biol. 26, 5744-5758. https://doi.org/10.1128/MCB.00224-06
  54. Heck, M.V., Azizov, M., Stehning, T., Walter, M., Kedersha, N., and Auburger, G. (2014). Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue. Neurogenetics 15, 135-144. https://doi.org/10.1007/s10048-014-0397-x
  55. Hibino, Y., Usui, T., Morita, Y., Hirose, N., Okazaki, M., Sugano, N., and Hiraga, K. (2006). Molecular properties and intracellular localization of rat liver nuclear scaffold protein P130. Biochim. Biophys. Acta 1759, 195-207. https://doi.org/10.1016/j.bbaexp.2006.04.010
  56. Hirsch-Reinshagen, V., Pottier, C., Nicholson, A.M., Baker, M., Hsiung, G.R., Krieger, C., Sengdy, P., Boylan, K.B., Dickson, D.W., Mesulam, M., et al. (2017). Clinical and neuropathological features of ALS/FTD with TIA1 mutations. Acta Neuropathol. Commun. 5, 96. https://doi.org/10.1186/s40478-017-0493-x
  57. Hisada-Ishii, S., Ebihara, M., Kobayashi, N., and Kitagawa, Y. (2007). Bipartite nuclear localization signal of matrin 3 is essential for vertebrate cells. Biochem. Biophys. Res. Commun. 354, 72-76. https://doi.org/10.1016/j.bbrc.2006.12.191
  58. Hoell, J.I., Larsson, E., Runge, S., Nusbaum, J.D., Duggimpudi, S., Farazi, T.A., Hafner, M., Borkhardt, A., Sander, C., and Tuschl, T. (2011). RNA targets of wild-type and mutant FET family proteins. Nat. Struct. Mol. Biol. 18, 1428-1431. https://doi.org/10.1038/nsmb.2163
  59. Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.D., Simons, M., Niessing, D., Madl, T., et al. (2018). Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706-719 e713. https://doi.org/10.1016/j.cell.2018.03.004
  60. Honda, H., Hamasaki, H., Wakamiya, T., Koyama, S., Suzuki, S.O., Fujii, N., and Iwaki, T. (2015). Loss of hnRNPA1 in ALS spinal cord motor neurons with TDP-43-positive inclusions. Neuropathology 35, 37-43. https://doi.org/10.1111/neup.12153
  61. Huang, E.J., Zhang, J., Geser, F., Trojanowski, J.Q., Strober, J.B., Dickson, D.W., Brown, R.H., Jr., Shapiro, B.E., and Lomen-Hoerth, C. (2010). Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol. 20, 1069-1076. https://doi.org/10.1111/j.1750-3639.2010.00413.x
  62. Huang, L., Nakai, Y., Kuwahara, I., and Matsumoto, K. (2012). PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma. Cancer Res 72, 1260-1269. https://doi.org/10.1158/0008-5472.CAN-11-2254
  63. Huelga, S.C., Vu, A.Q., Arnold, J.D., Liang, T.Y., Liu, P.P., Yan, B.Y., Donohue, J.P., Shiue, L., Hoon, S., Brenner, S., et al. (2012). Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 1, 167-178. https://doi.org/10.1016/j.celrep.2012.02.001
  64. Ibrahim, F., Maragkakis, M., Alexiou, P., Maronski, M.A., Dichter, M.A., and Mourelatos, Z. (2013). Identification of in vivo, conserved, TAF15 RNA binding sites reveals the impact of TAF15 on the neuronal transcriptome. Cell Rep. 3, 301-308. https://doi.org/10.1016/j.celrep.2013.01.021
  65. Ichiyanagi, N., Fujimori, K., Yano, M., Ishihara-Fujisaki, C., Sone, T., Akiyama, T., Okada, Y., Akamatsu, W., Matsumoto, T., Ishikawa, M., et al. (2016). Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Rep. 6, 496-510. https://doi.org/10.1016/j.stemcr.2016.02.011
  66. Iguchi, Y., Katsuno, M., Niwa, J., Takagi, S., Ishigaki, S., Ikenaka, K., Kawai, K., Watanabe, H., Yamanaka, K., Takahashi, R., et al. (2013). Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain 136, 1371-1382. https://doi.org/10.1093/brain/awt029
  67. Imbert, G., Saudou, F., Yvert, G., Devys, D., Trottier, Y., Garnier, J.M., Weber, C., Mandel, J.L., Cancel, G., Abbas, N., et al. (1996). Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 14, 285-291. https://doi.org/10.1038/ng1196-285
  68. Iradi, M.C.G., Triplett, J.C., Thomas, J.D., Davila, R., Crown, A.M., Brown, H., Lewis, J., Swanson, M.S., Xu, G., Rodriguez-Lebron, E., et al. (2018). Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy. Sci. Rep. 8, 4049. https://doi.org/10.1038/s41598-018-21371-4
  69. Izhar, L., Adamson, B., Ciccia, A., Lewis, J., Pontano-Vaites, L., Leng, Y., Liang, A.C., Westbrook, T.F., Harper, J.W., and Elledge, S.J. (2015). A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors. Cell Rep. 11, 1486-1500. https://doi.org/10.1016/j.celrep.2015.04.053
  70. Jain, S., Wheeler, J.R., Walters, R.W., Agrawal, A., Barsic, A., and Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell 164, 487-498. https://doi.org/10.1016/j.cell.2015.12.038
  71. Jobert, L., Pinzon, N., Van Herreweghe, E., Jady, B.E., Guialis, A., Kiss, T., and Tora, L. (2009). Human U1 snRNA forms a new chromatinassociated snRNP with TAF15. EMBO Rep. 10, 494-500. https://doi.org/10.1038/embor.2009.24
  72. Johnson, J.O., Pioro, E.P., Boehringer, A., Chia, R., Feit, H., Renton, A.E., Pliner, H.A., Abramzon, Y., Marangi, G., Winborn, B.J., et al. (2014). Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 17, 664-666. https://doi.org/10.1038/nn.3688
  73. Kapeli, K., Pratt, G.A., Vu, A.Q., Hutt, K.R., Martinez, F.J., Sundararaman, B., Batra, R., Freese, P., Lambert, N.J., Huelga, S.C., et al. (2016). Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses. Nat. Commun. 7, 12143. https://doi.org/10.1038/ncomms12143
  74. Kapeli, K., Martinez, F.J., and Yeo, G.W. (2017). Genetic mutations in RNA-binding proteins and their roles in ALS. Hum. Genet. 136, 1193-1214. https://doi.org/10.1007/s00439-017-1830-7
  75. Kashyap, M., Ganguly, A.K., and Bhavesh, N.S. (2015). Structural delineation of stem-loop RNA binding by human TAF15 protein. Sci. Rep. 5, 17298. https://doi.org/10.1038/srep17298
  76. Kedersha, N.L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431-1442. https://doi.org/10.1083/jcb.147.7.1431
  77. Kedersha, N., Cho, M.R., Li, W., Yacono, P.W., Chen, S., Gilks, N., Golan, D.E., and Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257-1268. https://doi.org/10.1083/jcb.151.6.1257
  78. Kim, H.J., Kim, N.C., Wang, Y.D., Scarborough, E.A., Moore, J., Diaz, Z., MacLea, K.S., Freibaum, B., Li, S., Molliex, A., et al. (2013). Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495, 467-473. https://doi.org/10.1038/nature11922
  79. Kwiatkowski, T.J., Jr., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205-1208. https://doi.org/10.1126/science.1166066
  80. Kwon, S., Barbarese, E., and Carson, J.H. (1999). The cis-acting RNA trafficking signal from myelin basic protein mRNA and its cognate trans-acting ligand hnRNP A2 enhance cap-dependent translation. J. Cell Biol. 147, 247-256. https://doi.org/10.1083/jcb.147.2.247
  81. Lagier-Tourenne, C., Polymenidou, M., Hutt, K.R., Vu, A.Q., Baughn, M., Huelga, S.C., Clutario, K.M., Ling, S.C., Liang, T.Y., Mazur, C., et al. (2012). Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488-1497. https://doi.org/10.1038/nn.3230
  82. Lanson, N.A., Jr., and Pandey, U.B. (2012). FUS-related proteinopathies: lessons from animal models. Brain Res. 1462, 44-60. https://doi.org/10.1016/j.brainres.2012.01.039
  83. Leblond, C.S., Gan-Or, Z., Spiegelman, D., Laurent, S.B., Szuto, A., Hodgkinson, A., Dionne-Laporte, A., Provencher, P., de Carvalho, M., Orru, S., et al. (2016). Replication study of MATR3 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 37, 209 e217-209 e221.
  84. Lee, T., Li, Y.R., Ingre, C., Weber, M., Grehl, T., Gredal, O., de Carvalho, M., Meyer, T., Tysnes, O.B., Auburger, G., et al. (2011). Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. Hum. Mol. Genet. 20, 1697-1700. https://doi.org/10.1093/hmg/ddr045
  85. Lee, J., Kim, M., Itoh, T.Q., and Lim, C. (2018a). Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. Wiley Interdiscip Rev. RNA, e1488.
  86. Lee, Y., Jonson, P.H., Sarparanta, J., Palmio, J., Sarkar, M., Vihola, A., Evila, A., Suominen, T., Penttila, S., Savarese, M., et al. (2018b). TIA1 variant drives myodegeneration in multisystem proteinopathy with SQSTM1 mutations. J. Clin. Invest. 128, 1164-1177. https://doi.org/10.1172/JCI97103
  87. Li, Y.R., King, O.D., Shorter, J., and Gitler, A.D. (2013). Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361-372. https://doi.org/10.1083/jcb.201302044
  88. Li, S., Zhang, P., Freibaum, B.D., Kim, N.C., Kolaitis, R.M., Molliex, A., Kanagaraj, A.P., Yabe, I., Tanino, M., Tanaka, S., et al. (2016). Genetic interaction of hnRNPA2B1 and DNAJB6 in a Drosophila model of multisystem proteinopathy. Hum. Mol. Genet. 25, 936-950. https://doi.org/10.1093/hmg/ddv627
  89. Lim, C., and Allada, R. (2013). ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila. Science 340, 875-879. https://doi.org/10.1126/science.1234785
  90. Lin, K.P., Tsai, P.C., Liao, Y.C., Chen, W.T., Tsai, C.P., Soong, B.W., and Lee, Y.C. (2015). Mutational analysis of MATR3 in Taiwanese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 36, 2005 e2001-2004.
  91. Ling, J.P., Pletnikova, O., Troncoso, J.C., and Wong, P.C. (2015). TDP-43 repression of nonconserved cryptic exons is compromised in ALSFTD. Science 349, 650-655. https://doi.org/10.1126/science.aab0983
  92. Liu, Y.C., Chiang, P.M., and Tsai, K.J. (2013). Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int. J. Mol. Sci. 14, 20079-20111. https://doi.org/10.3390/ijms141020079
  93. Liu, Q., Shu, S., Wang, R.R., Liu, F., Cui, B., Guo, X.N., Lu, C.X., Li, X.G., Liu, M.S., Peng, B., et al. (2016). Whole-exome sequencing identifies a missense mutation in hnRNPA1 in a family with flail arm ALS. Neurology 87, 1763-1769. https://doi.org/10.1212/WNL.0000000000003256
  94. Liu, T.Y., Chen, Y.C., Jong, Y.J., Tsai, H.J., Lee, C.C., Chang, Y.S., Chang, J.G., and Chang, Y.F. (2017a). Muscle developmental defects in heterogeneous nuclear Ribonucleoprotein A1 knockout mice. Open Biol. 7.
  95. Liu, Z.J., Lin, H.X., Liu, G.L., Tao, Q.Q., Ni, W., Xiao, B.G., and Wu, Z.Y. (2017b). The investigation of genetic and clinical features in Chinese patients with juvenile amyotrophic lateral sclerosis. Clin. Genet. 92, 267-273. https://doi.org/10.1111/cge.13015
  96. Liu-Yesucevitz, L., Bilgutay, A., Zhang, Y.J., Vanderweyde, T., Citro, A., Mehta, T., Zaarur, N., McKee, A., Bowser, R., Sherman, M., et al. (2010). Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5, e13250. https://doi.org/10.1371/journal.pone.0013250
  97. Lu, H.P., Gan, S.R., Chen, S., Li, H.F., Liu, Z.J., Ni, W., Wang, N., and Wu, Z.Y. (2015). Intermediate-length polyglutamine in ATXN2 is a possible risk factor among Eastern Chinese patients with amyotrophic lateral sclerosis. Neurobiol. Aging 36, 1603 e1611-1604.
  98. Luo, F., Gui, X., Zhou, H., Gu, J., Li, Y., Liu, X., Zhao, M., Li, D., Li, X., and Liu, C. (2018). Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat. Struct. Mol. Biol. 25, 341-346. https://doi.org/10.1038/s41594-018-0050-8
  99. Mackenzie, I.R., Bigio, E.H., Ince, P.G., Geser, F., Neumann, M., Cairns, N.J., Kwong, L.K., Forman, M.S., Ravits, J., Stewart, H., et al. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427-434. https://doi.org/10.1002/ana.21147
  100. Mackenzie, I.R., Nicholson, A.M., Sarkar, M., Messing, J., Purice, M.D., Pottier, C., Annu, K., Baker, M., Perkerson, R.B., Kurti, A., et al. (2017). TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron 95, 808-816 e809. https://doi.org/10.1016/j.neuron.2017.07.025
  101. Marangi, G., Lattante, S., Doronzio, P.N., Conte, A., Tasca, G., Monforte, M., Patanella, A.K., Bisogni, G., Meleo, E., La Spada, S., et al. (2017). Matrin 3 variants are frequent in Italian ALS patients. Neurobiol. Aging 49, 218 e211-218 e217.
  102. Marko, M., Vlassis, A., Guialis, A., and Leichter, M. (2012). Domains involved in TAF15 subcellular localisation: dependence on cell type and ongoing transcription. Gene 506, 331-338. https://doi.org/10.1016/j.gene.2012.06.088
  103. Martinez, F.J., Pratt, G.A., Van Nostrand, E.L., Batra, R., Huelga, S.C., Kapeli, K., Freese, P., Chun, S.J., Ling, K., Gelboin-Burkhart, C., et al. (2016). Protein-RNA networks regulated by normal and ALSassociated mutant HNRNPA2B1 in the nervous system. Neuron 92, 780-795. https://doi.org/10.1016/j.neuron.2016.09.050
  104. Mayeda, A., and Krainer, A.R. (1992). Regulation of alternative premRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68, 365-375. https://doi.org/10.1016/0092-8674(92)90477-T
  105. Mensch, A., Meinhardt, B., Bley, N., Huttelmaier, S., Schneider, I., Stoltenburg-Didinger, G., Kraya, T., Muller, T., and Zierz, S. (2018). The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Exp. Neurol. 306, 222-231. https://doi.org/10.1016/j.expneurol.2018.05.012
  106. Michael, W.M., Choi, M., and Dreyfuss, G. (1995). A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83, 415-422. https://doi.org/10.1016/0092-8674(95)90119-1
  107. Mili, S., Shu, H.J., Zhao, Y., and Pinol-Roma, S. (2001). Distinct RNP complexes of shuttling hnRNP proteins with pre-mRNA and mRNA: candidate intermediates in formation and export of mRNA. Mol. Cell Biol. 21, 7307-7319. https://doi.org/10.1128/MCB.21.21.7307-7319.2001
  108. Mitchell, J.C., McGoldrick, P., Vance, C., Hortobagyi, T., Sreedharan, J., Rogelj, B., Tudor, E.L., Smith, B.N., Klasen, C., Miller, C.C., et al. (2013). Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 125, 273-288. https://doi.org/10.1007/s00401-012-1043-z
  109. Mohagheghi, F., Prudencio, M., Stuani, C., Cook, C., Jansen-West, K., Dickson, D.W., Petrucelli, L., and Buratti, E. (2016). TDP-43 functions within a network of hnRNP proteins to inhibit the production of a truncated human SORT1 receptor. Hum. Mol. Genet. 25, 534-545. https://doi.org/10.1093/hmg/ddv491
  110. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., and Taylor, J.P. (2015). Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133. https://doi.org/10.1016/j.cell.2015.09.015
  111. Monahan, Z., Shewmaker, F., and Pandey, U.B. (2016). Stress granules at the intersection of autophagy and ALS. Brain Res. 1649, 189-200. https://doi.org/10.1016/j.brainres.2016.05.022
  112. Morohoshi, F., Arai, K., Takahashi, E.I., Tanigami, A., and Ohki, M. (1996). Cloning and mapping of a human RBP56 gene encoding a putative RNA binding protein similar to FUS/TLS and EWS proteins. Genomics 38, 51-57. https://doi.org/10.1006/geno.1996.0591
  113. Munro, T.P., Magee, R.J., Kidd, G.J., Carson, J.H., Barbarese, E., Smith, L.M., and Smith, R. (1999). Mutational analysis of a heterogeneous nuclear ribonucleoprotein A2 response element for RNA trafficking. J. Biol. Chem. 274, 34389-34395. https://doi.org/10.1074/jbc.274.48.34389
  114. Murakami, T., Qamar, S., Lin, J.Q., Schierle, G.S., Rees, E., Miyashita, A., Costa, A.R., Dodd, R.B., Chan, F.T., Michel, C.H., et al. (2015). ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron 88, 678-690. https://doi.org/10.1016/j.neuron.2015.10.030
  115. Murray, D.T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., and Tycko, R. (2017). Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615-627 e616. https://doi.org/10.1016/j.cell.2017.08.048
  116. Nakayasu, H., and Berezney, R. (1991). Nuclear matrins: identification of the major nuclear matrix proteins. Proc. Natl. Acad. Sci. USA 88, 10312-10316. https://doi.org/10.1073/pnas.88.22.10312
  117. Nakielny, S., Siomi, M.C., Siomi, H., Michael, W.M., Pollard, V., and Dreyfuss, G. (1996). Transportin: nuclear transport receptor of a novel nuclear protein import pathway. Exp. Cell Res. 229, 261-266. https://doi.org/10.1006/excr.1996.0369
  118. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133. https://doi.org/10.1126/science.1134108
  119. Neumann, M., Bentmann, E., Dormann, D., Jawaid, A., DeJesus-Hernandez, M., Ansorge, O., Roeber, S., Kretzschmar, H.A., Munoz, D.G., Kusaka, H., et al. (2011). FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134, 2595-2609. https://doi.org/10.1093/brain/awr201
  120. Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M.L., Lehrach, H., and Krobitsch, S. (2007). Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell 18, 1385-1396. https://doi.org/10.1091/mbc.e06-12-1120
  121. Ohno, T., Ouchida, M., Lee, L., Gatalica, Z., Rao, V.N., and Reddy, E.S. (1994). The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains. Oncogene 9, 3087-3097.
  122. Origone, P., Verdiani, S., Bandettini Di Poggio, M., Zuccarino, R., Vignolo, M., Caponnetto, C., and Mandich, P. (2015). A novel Arg147Trp MATR3 missense mutation in a slowly progressive ALS Italian patient. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 530-531. https://doi.org/10.3109/21678421.2015.1058397
  123. Ostrowski, L.A., Hall, A.C., and Mekhail, K. (2017). Ataxin-2: From RNA control to human health and disease. Genes (Basel) 8, pii: E157. https://doi.org/10.3390/genes8060157
  124. Paronetto, M.P., Minana, B., and Valcarcel, J. (2011). The Ewing sarcoma protein regulates DNA damage-induced alternative splicing. Mol. Cell 43, 353-368. https://doi.org/10.1016/j.molcel.2011.05.035
  125. Paronetto, M.P., Bernardis, I., Volpe, E., Bechara, E., Sebestyen, E., Eyras, E., and Valcarcel, J. (2014). Regulation of FAS exon definition and apoptosis by the Ewing sarcoma protein. Cell Rep. 7, 1211-1226. https://doi.org/10.1016/j.celrep.2014.03.077
  126. Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., et al. (2015). A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066-1077. https://doi.org/10.1016/j.cell.2015.07.047
  127. Picher-Martel, V., Valdmanis, P.N., Gould, P.V., Julien, J.P., and Dupre, N. (2016). From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol. Commun. 4, 70. https://doi.org/10.1186/s40478-016-0340-5
  128. Piecyk, M., Wax, S., Beck, A.R., Kedersha, N., Gupta, M., Maritim, B., Chen, S., Gueydan, C., Kruys, V., Streuli, M., et al. (2000). TIA-1 is a translational silencer that selectively regulates the expression of TNFalpha. EMBO J. 19, 4154-4163. https://doi.org/10.1093/emboj/19.15.4154
  129. Pinol-Roma, S., and Dreyfuss, G. (1992). Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355, 730-732. https://doi.org/10.1038/355730a0
  130. Pollard, V.W., Michael, W.M., Nakielny, S., Siomi, M.C., Wang, F., and Dreyfuss, G. (1996). A novel receptor-mediated nuclear protein import pathway. Cell 86, 985-994. https://doi.org/10.1016/S0092-8674(00)80173-7
  131. Polymenidou, M., Lagier-Tourenne, C., Hutt, K.R., Huelga, S.C., Moran, J., Liang, T.Y., Ling, S.C., Sun, E., Wancewicz, E., Mazur, C., et al. (2011). Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 14, 459-468. https://doi.org/10.1038/nn.2779
  132. Purice, M.D., and Taylor, J.P. (2018). Linking hnRNP Function to ALS and FTD Pathology. Front. Neurosci. 12, 326. https://doi.org/10.3389/fnins.2018.00326
  133. Qamar, S., Wang, G., Randle, S.J., Ruggeri, F.S., Varela, J.A., Lin, J.Q., Phillips, E.C., Miyashita, A., Williams, D., Strohl, F., et al. (2018). FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell 173, 720-734 e715. https://doi.org/10.1016/j.cell.2018.03.056
  134. Qiu, H., Lee, S., Shang, Y., Wang, W.Y., Au, K.F., Kamiya, S., Barmada, S.J., Finkbeiner, S., Lui, H., Carlton, C.E., et al. (2014). ALSassociated mutation FUS-R521C causes DNA damage and RNA splicing defects. J. Clin. Invest 124, 981-999. https://doi.org/10.1172/JCI72723
  135. Rabbitts, T.H., Forster, A., Larson, R., and Nathan, P. (1993). Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat. Genet. 4, 175-180. https://doi.org/10.1038/ng0693-175
  136. Ralser, M., Albrecht, M., Nonhoff, U., Lengauer, T., Lehrach, H., and Krobitsch, S. (2005). An integrative approach to gain insights into the cellular function of human ataxin-2. J. Mol. Biol. 346, 203-214. https://doi.org/10.1016/j.jmb.2004.11.024
  137. Reyes, R., Alcalde, J., and Izquierdo, J.M. (2009). Depletion of T-cell intracellular antigen proteins promotes cell proliferation. Genome Biol. 10, R87. https://doi.org/10.1186/gb-2009-10-8-r87
  138. Rogelj, B., Easton, L.E., Bogu, G.K., Stanton, L.W., Rot, G., Curk, T., Zupan, B., Sugimoto, Y., Modic, M., Haberman, N., et al. (2012). Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci. Rep. 2, 603. https://doi.org/10.1038/srep00603
  139. Ross, O.A., Rutherford, N.J., Baker, M., Soto-Ortolaza, A.I., Carrasquillo, M.M., DeJesus-Hernandez, M., Adamson, J., Li, M., Volkening, K., Finger, E., et al. (2011). Ataxin-2 repeat-length variation and neurodegeneration. Hum. Mol. Genet. 20, 3207-3212. https://doi.org/10.1093/hmg/ddr227
  140. Rowland, L.P., and Shneider, N.A. (2001). Amyotrophic lateral sclerosis. N Engl. J. Med. 344, 1688-1700. https://doi.org/10.1056/NEJM200105313442207
  141. Salton, M., Elkon, R., Borodina, T., Davydov, A., Yaspo, M.L., Halperin, E., and Shiloh, Y. (2011). Matrin 3 binds and stabilizes mRNA. PLoS One 6, e23882. https://doi.org/10.1371/journal.pone.0023882
  142. Sanchez-Jimenez, C., and Izquierdo, J.M. (2013). T-cell intracellular antigen (TIA)-proteins deficiency in murine embryonic fibroblasts alters cell cycle progression and induces autophagy. PLoS One 8, e75127. https://doi.org/10.1371/journal.pone.0075127
  143. Satterfield, T.F., and Pallanck, L.J. (2006). Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum. Mol. Genet. 15, 2523-2532. https://doi.org/10.1093/hmg/ddl173
  144. Senderek, J., Garvey, S.M., Krieger, M., Guergueltcheva, V., Urtizberea, A., Roos, A., Elbracht, M., Stendel, C., Tournev, I., Mihailova, V., et al. (2009). Autosomal-dominant distal myopathy associated with a recurrent missense mutation in the gene encoding the nuclear matrix protein, matrin 3. Am. J. Hum. Genet. 84, 511-518. https://doi.org/10.1016/j.ajhg.2009.03.006
  145. Sephton, C.F., Cenik, C., Kucukural, A., Dammer, E.B., Cenik, B., Han, Y., Dewey, C.M., Roth, F.P., Herz, J., Peng, J., et al. (2011). Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. J. Biol. Chem. 286, 1204-1215. https://doi.org/10.1074/jbc.M110.190884
  146. Sephton, C.F., Tang, A.A., Kulkarni, A., West, J., Brooks, M., Stubblefield, J.J., Liu, Y., Zhang, M.Q., Green, C.B., Huber, K.M., et al. (2014). Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proc. Natl. Acad. Sci. USA 111, E4769-4778. https://doi.org/10.1073/pnas.1406162111
  147. Shan, J., Moran-Jones, K., Munro, T.P., Kidd, G.J., Winzor, D.J., Hoek, K.S., and Smith, R. (2000). Binding of an RNA trafficking response element to heterogeneous nuclear ribonucleoproteins A1 and A2. J. Biol. Chem. 275, 38286-38295. https://doi.org/10.1074/jbc.M007642200
  148. Shan, J., Munro, T.P., Barbarese, E., Carson, J.H., and Smith, R. (2003). A molecular mechanism for mRNA trafficking in neuronal dendrites. J. Neurosci. 23, 8859-8866. https://doi.org/10.1523/JNEUROSCI.23-26-08859.2003
  149. Shang, Y., and Huang, E.J. (2016). Mechanisms of FUS mutations in familial amyotrophic lateral sclerosis. Brain Res. 1647, 65-78. https://doi.org/10.1016/j.brainres.2016.03.036
  150. Sharma, A., Lyashchenko, A.K., Lu, L., Nasrabady, S.E., Elmaleh, M., Mendelsohn, M., Nemes, A., Tapia, J.C., Mentis, G.Z., and Shneider, N.A. (2016). ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function. Nat. Commun. 7, 10465. https://doi.org/10.1038/ncomms10465
  151. Shelkovnikova, T.A., Peters, O.M., Deykin, A.V., Connor-Robson, N., Robinson, H., Ustyugov, A.A., Bachurin, S.O., Ermolkevich, T.G., Goldman, I.L., Sadchikova, E.R., et al. (2013). Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J. Biol. Chem. 288, 25266-25274. https://doi.org/10.1074/jbc.M113.492017
  152. Skowronska-Krawczyk, D., Ma, Q., Schwartz, M., Scully, K., Li, W., Liu, Z., Taylor, H., Tollkuhn, J., Ohgi, K.A., Notani, D., et al. (2014). Required enhancer-matrin-3 network interactions for a homeodomain transcription program. Nature 514, 257-261. https://doi.org/10.1038/nature13573
  153. Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672. https://doi.org/10.1126/science.1154584
  154. Tada, M., Doi, H., Koyano, S., Kubota, S., Fukai, R., Hashiguchi, S., Hayashi, N., Kawamoto, Y., Kunii, M., Tanaka, K., et al. (2018). Matrin 3 is a component of neuronal cytoplasmic inclusions of motor neurons in sporadic amyotrophic lateral sclerosis. Am. J. Pathol. 188, 507-514. https://doi.org/10.1016/j.ajpath.2017.10.007
  155. Tan, Q., Yalamanchili, H.K., Park, J., De Maio, A., Lu, H.C., Wan, Y.W., White, J.J., Bondar, V.V., Sayegh, L.S., Liu, X., et al. (2016). Extensive cryptic splicing upon loss of RBM17 and TDP43 in neurodegeneration models. Hum. Mol. Genet. 25, 5083-5093.
  156. Taylor, J.P., Brown, R.H., Jr., and Cleveland, D.W. (2016). Decoding ALS: from genes to mechanism. Nature 539, 197-206. https://doi.org/10.1038/nature20413
  157. Ticozzi, N., Vance, C., Leclerc, A.L., Keagle, P., Glass, J.D., McKenna-Yasek, D., Sapp, P.C., Silani, V., Bosco, D.A., Shaw, C.E., et al. (2011). Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156B, 285-290.
  158. Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., Konig, J., Hortobagyi, T., Nishimura, A.L., Zupunski, V., et al. (2011). Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452-458. https://doi.org/10.1038/nn.2778
  159. Uemura, Y., Oshima, T., Yamamoto, M., Reyes, C.J., Costa Cruz, P.H., Shibuya, T., and Kawahara, Y. (2017). Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing. Genes Cells 22, 785-798. https://doi.org/10.1111/gtc.12512
  160. Van Damme, P., Veldink, J.H., van Blitterswijk, M., Corveleyn, A., van Vught, P.W., Thijs, V., Dubois, B., Matthijs, G., van den Berg, L.H., and Robberecht, W. (2011). Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76, 2066-2072. https://doi.org/10.1212/WNL.0b013e31821f445b
  161. Van Deerlin, V.M., Leverenz, J.B., Bekris, L.M., Bird, T.D., Yuan, W., Elman, L.B., Clay, D., Wood, E.M., Chen-Plotkin, A.S., Martinez-Lage, M., et al. (2008). TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis. Lancet Neurol. 7, 409-416. https://doi.org/10.1016/S1474-4422(08)70071-1
  162. Vance, C., Rogelj, B., Hortobagyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208-1211. https://doi.org/10.1126/science.1165942
  163. Vanden Broeck, L., Callaerts, P., and Dermaut, B. (2014). TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol. Med. 20, 66-71. https://doi.org/10.1016/j.molmed.2013.11.003
  164. Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Perez-Hernandez, D., Vazquez, J., Martin-Cofreces, N., Martinez-Herrera, D.J., Pascual-Montano, A., Mittelbrunn, M., and Sanchez-Madrid, F. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980. https://doi.org/10.1038/ncomms3980
  165. Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M., and Baloh, R.H. (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 106, 18809-18814. https://doi.org/10.1073/pnas.0908767106
  166. Winton, M.J., Igaz, L.M., Wong, M.M., Kwong, L.K., Trojanowski, J.Q., and Lee, V.M. (2008). Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J. Biol. Chem. 283, 13302-13309. https://doi.org/10.1074/jbc.M800342200
  167. Wroe, R., Wai-Ling Butler, A., Andersen, P.M., Powell, J.F., and Al-Chalabi, A. (2008). ALSOD: the Amyotrophic Lateral Sclerosis Online Database. Amyotroph Lateral Scler 9, 249-250. https://doi.org/10.1080/17482960802146106
  168. Xiao, S., Sanelli, T., Dib, S., Sheps, D., Findlater, J., Bilbao, J., Keith, J., Zinman, L., Rogaeva, E., and Robertson, J. (2011). RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol. Cell Neurosci. 47, 167-180. https://doi.org/10.1016/j.mcn.2011.02.013
  169. Xiao, S., Sanelli, T., Chiang, H., Sun, Y., Chakrabartty, A., Keith, J., Rogaeva, E., Zinman, L., and Robertson, J. (2015). Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Acta Neuropathol. 130, 49-61. https://doi.org/10.1007/s00401-015-1412-5
  170. Xu, L., Li, J., Tang, L., Zhang, N., and Fan, D. (2016). MATR3 mutation analysis in a Chinese cohort with sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 38, 218 e213-218 e214.
  171. Yan, J., Deng, H.X., Siddique, N., Fecto, F., Chen, W., Yang, Y., Liu, E., Donkervoort, S., Zheng, J.G., Shi, Y., et al. (2010). Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75, 807-814. https://doi.org/10.1212/WNL.0b013e3181f07e0c
  172. Yang, X., Bani, M.R., Lu, S.J., Rowan, S., Ben-David, Y., and Chabot, B. (1994). The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5' splice site selection in vivo. Proc. Natl. Acad. Sci. USA 91, 6924-6928. https://doi.org/10.1073/pnas.91.15.6924
  173. Yokoshi, M., Li, Q., Yamamoto, M., Okada, H., Suzuki, Y., and Kawahara, Y. (2014). Direct binding of Ataxin-2 to distinct elements in 3' UTRs promotes mRNA stability and protein expression. Mol. Cell 55, 186-198. https://doi.org/10.1016/j.molcel.2014.05.022
  174. Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y.J., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B., Saltzberg, D., Soniat, M., et al. (2018). Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173, 693-705 e622. https://doi.org/10.1016/j.cell.2018.03.003
  175. Yuan, Z., Jiao, B., Hou, L., Xiao, T., Liu, X., Wang, J., Xu, J., Zhou, L., Yan, X., Tang, B., et al. (2018). Mutation analysis of the TIA1 gene in Chinese patients with amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol. Aging 64, 160 e169-160 e112.
  176. Zakaryan, R.P., and Gehring, H. (2006). Identification and characterization of the nuclear localization/retention signal in the EWS proto-oncoprotein. J. Mol. Biol. 363, 27-38. https://doi.org/10.1016/j.jmb.2006.08.018
  177. Zhang, Z., and Carmichael, G.G. (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106, 465-475. https://doi.org/10.1016/S0092-8674(01)00466-4
  178. Zhang, K., Liu, Q., Shen, D., Tai, H., Fu, H., Liu, S., Wang, Z., Shi, J., Ding, Q., Li, X., et al. (2018). Genetic analysis of TIA1 gene in Chinese patients with amyotrophic lateral sclerosis. Neurobiol. Aging.

Cited by

  1. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes vol.9, pp.None, 2018, https://doi.org/10.1038/s41598-019-49821-7
  2. A Systematic Review of Suggested Molecular Strata, Biomarkers and Their Tissue Sources in ALS vol.10, pp.None, 2018, https://doi.org/10.3389/fneur.2019.00400
  3. Mechanisms of Immune Activation by c9orf72- Expansions in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.01298
  4. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? vol.142, pp.5, 2019, https://doi.org/10.1093/brain/awz078
  5. Analysis of eEF1Bγ interactome in the nuclear fraction of A549 human lung adenocarcinoma cells vol.35, pp.4, 2018, https://doi.org/10.7124/bc.000a0a
  6. MROH7‐TTC4 read‐through lncRNA suppresses vascular endothelial cell apoptosis and is upregulated by inhibition of ANXA7 GTPase activity vol.286, pp.24, 2018, https://doi.org/10.1111/febs.15038
  7. eIF4B and eIF4H mediate GR production from expanded G4C2 in a Drosophila model for C9orf72 -associated ALS vol.7, pp.1, 2018, https://doi.org/10.1186/s40478-019-0711-9
  8. Alternative Splicing of ALS Genes: Misregulation and Potential Therapies vol.40, pp.1, 2018, https://doi.org/10.1007/s10571-019-00717-0
  9. RNA-binding proteins Musashi and tau soluble aggregates initiate nuclear dysfunction vol.11, pp.1, 2018, https://doi.org/10.1038/s41467-020-18022-6
  10. A New Rat Model of Chronic Cerebral Hypoperfusion Resulting in Early-Stage Vascular Cognitive Impairment vol.12, pp.None, 2018, https://doi.org/10.3389/fnagi.2020.00086
  11. Connecting RNA-Modifying Similarities of TDP-43, FUS, and SOD1 with MicroRNA Dysregulation Amidst A Renewed Network Perspective of Amyotrophic Lateral Sclerosis Proteinopathy vol.21, pp.10, 2018, https://doi.org/10.3390/ijms21103464
  12. Molecular dissection of ALS‐linked TDP‐43 - involvement of the Gly‐rich domain in interaction with G‐quadruplex mRNA vol.594, pp.14, 2020, https://doi.org/10.1002/1873-3468.13800
  13. The Impact of ALS-Associated Genes hnRNPA1 , MATR3 , VCP and UBQLN2 on the Severity of TDP-43 Aggregation vol.9, pp.8, 2018, https://doi.org/10.3390/cells9081791
  14. Stress Induces Dynamic, Cytotoxicity-Antagonizing TDP-43 Nuclear Bodies via Paraspeckle LncRNA NEAT1-Mediated Liquid-Liquid Phase Separation vol.79, pp.3, 2018, https://doi.org/10.1016/j.molcel.2020.06.019
  15. Heterogeneous nuclear ribonucleoprotein A1 exerts protective role in intracerebral hemorrhage-induced secondary brain injury in rats vol.165, pp.None, 2020, https://doi.org/10.1016/j.brainresbull.2020.09.023
  16. RNA-recognition motif in Matrin-3 mediates neurodegeneration through interaction with hnRNPM vol.8, pp.1, 2020, https://doi.org/10.1186/s40478-020-01021-5
  17. A Novel Age-Related Circular RNA Circ-ATXN2 Inhibits Proliferation, Promotes Cell Death and Adipogenesis in Rat Adipose Tissue-Derived Stromal Cells vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.761926
  18. Mutation Screening of the GLE1 Gene in a Large Chinese Cohort of Amyotrophic Lateral Sclerosis Patients vol.15, pp.None, 2021, https://doi.org/10.3389/fnins.2021.595775
  19. Hypothesis and Theory: Roles of Arginine Methylation in C9orf72-Mediated ALS and FTD vol.15, pp.None, 2018, https://doi.org/10.3389/fncel.2021.633668
  20. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy vol.178, pp.6, 2018, https://doi.org/10.1111/bph.15276
  21. RNA-Binding Proteins and the Complex Pathophysiology of ALS vol.22, pp.5, 2018, https://doi.org/10.3390/ijms22052598
  22. Evidence of synergism among three genetic variants in a patient with LMNA-related lipodystrophy and amyotrophic lateral sclerosis leading to a remarkable nuclear phenotype vol.476, pp.7, 2018, https://doi.org/10.1007/s11010-021-04103-7
  23. Modern approaches in gene therapy of motor neuron diseases vol.41, pp.5, 2018, https://doi.org/10.1002/med.21705
  24. The Great Escape: mRNA Export through the Nuclear Pore Complex vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111767
  25. Insights into amyotrophic lateral sclerosis linked Pro525Arg mutation in the fused in sarcoma protein through in silico analysis and molecular dynamics simulation vol.39, pp.16, 2018, https://doi.org/10.1080/07391102.2020.1794967
  26. Nuclear depletion of RNA-binding protein ELAVL3 (HuC) in sporadic and familial amyotrophic lateral sclerosis vol.142, pp.6, 2018, https://doi.org/10.1007/s00401-021-02374-4
  27. Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models vol.24, pp.12, 2018, https://doi.org/10.1016/j.isci.2021.103463
  28. The NRF2-Dependent Transcriptional Regulation of Antioxidant Defense Pathways: Relevance for Cell Type-Specific Vulnerability to Neurodegeneration and Therapeutic Intervention vol.11, pp.1, 2018, https://doi.org/10.3390/antiox11010008