DOI QR코드

DOI QR Code

Effect of soil-structure interaction on seismic damage of mid-rise reinforced concrete structures retrofitted by FRP composites

  • Van Cao, Vui (Faculty of Civil Engineering, Ho Chi Minh city University of Technology (HCMUT)-Vietnam National University)
  • 투고 : 2018.05.04
  • 심사 : 2018.06.27
  • 발행 : 2018.09.25

초록

The current study explores the soil-structure interaction (SSI) effect on the potential seismic damage of mid-rise non-seismically designed reinforced concrete frames retrofitted by Fibre Reinforced Polymer (FRP). An 8-storey reinforced concrete frame poorly-confined due to transverse reinforcement deficiency is selected and then retrofitted by FRP wraps to provide external confinement. The poorly-confined and FRP retrofitted frames with/without SSI are modelled using hysteretic nonlinear elements. Inelastic time history and damage analyses are performed for these frames subjected to different seismic intensities. The results show that the FRP confinement significantly reduces one or two damage levels for the poorly-confined frame. More importantly, the SSI effect is found to increase the potential seismic damage of the retrofitted frame, reducing the effectiveness of FRP retrofitting. This finding, which is contrary to the conventionally beneficial concept of SSI governing for decades in structural and earthquake engineering, is worth taking into account in designing and evaluating retrofitted structures.

키워드

과제정보

연구 과제 주관 기관 : Vietnam National Foundation for Science and Technology Development (NAFOSTED)

참고문헌

  1. ACI (2008), Building Code Requirements for Structural Concrete (ACI 318M-08) and Commentary, 38800 Country Club Drive, Farmington Hills, American Concrete Institute, MI 48331, U.S.A.
  2. Adibi, M., Marefat, M.S., Arani, K.K. and Zare, H. (2017), "External retrofit of beam-column joints in old fashioned RC structures", Earthq. Struct., 12(2), 237-250. https://doi.org/10.12989/eas.2017.12.2.237
  3. ASCE (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Prepared for Federal Emergency Management Agency, FEMA Publication No. 356, Washington, D.C., Federal Emergency Management Agency.
  4. ASCE (2010), Minimum Design Loads for buildings and other structures, ASCE/SEI 7-10, American Society of Civil Engineers.
  5. Aviles, J. and Perez-Rocha, L.E. (2003), "Soil-structure interaction in yielding systems", Earthq. Eng. Struct. Dyn., 32(11), 1749-1771. https://doi.org/10.1002/eqe.300
  6. Baji, H. (2017), "Calibration of the FRP resistance reduction factor for FRP-confined reinforced concrete building columns", J. Compos. Constr., 21(3), 04016107. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000769
  7. Baji, H., Ronagh, H.R. and Li, C.Q. (2016), "Probabilistic design models for ultimate strength and strain of FRP-confined concrete", J. Compos. Constr., 20(6), 04016051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000704
  8. Balsamo, A., Colombo, A., Manfredi, G., Negro, P. and Prota, A. (2005), "Seismic behavior of a full-scale RC frame repaired using CFRP laminates", Eng. Struct., 27, 769-780. https://doi.org/10.1016/j.engstruct.2005.01.002
  9. Bielak, J. (1971), "Earthquake response of building-foundation systems," Ph.D., California, Retrieved from http://authors.library.caltech.edu/26407/1/7104.pdf .
  10. Cao, V.V. and Ronagh, H.R. (2014), "Reducing the seismic damage of reinforced concrete frames using FRP confinement", Compos. Struct., 118, 403-415. https://doi.org/10.1016/j.compstruct.2014.07.038
  11. Cao, V.V., Ronagh, H.R., Ashraf, M. and Baji, H. (2014), "A new damage index for reinforced concrete structures", Earthq. Struct., 6(6), 581-609. https://doi.org/10.12989/eas.2014.6.6.581
  12. Chopra, A.K. and Gutierrez, J.A. (1974), "Earthquake response analysis of multistorey buildings including foundation interaction", Earthq. Eng. Struct. Dyn., 3(1), 65-77. https://doi.org/10.1002/eqe.4290030106
  13. Computers and Structures Inc (2017), SAP2000 Version 19.2.0.
  14. De Luca, A., Nardone, F., Matta, F., Nanni, A., Lignola, G.P. and Prota, A. (2011), "Structural evaluation of full-scale FRPconfined reinforced concrete columns", J. Compos. Constr., 15(1), 112-123. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000152
  15. Di Ludovico, M., Manfredi, G., Mola, E., Negro, P. and Prota, A. (2008), "Seismic behavior of a full-scale RC structure retrofitted using GFRP laminates", J. Struct. Eng., 134(5), 810-821. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:5(810)
  16. Di Ludovico, M., Prota, A., Manfredi, G. and Cosenza, E. (2008), "Seismic strengthening of an under-designed RC structure with FRP", Earthq. Eng. Struct. Dyn, 37, 141-162. https://doi.org/10.1002/eqe.749
  17. Dutta, S.C., Bhattacharya, K. and Roy, R. (2004), "Response of low-rise buildings under seismic ground excitation incorporating soil-structure interaction", Soil Dyn. Earthq. Eng., 24(12), 893-914. https://doi.org/10.1016/j.soildyn.2004.07.001
  18. Eslami, A. and Ronagh, H.R. (2013), "Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing-A case study", Compos. Part B: Eng., 45(1), 1265-1274. https://doi.org/10.1016/j.compositesb.2012.09.031
  19. FEMA750 (2009), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures, Federal Emergency Management Agency.
  20. Flogeras, A.K. and Papagiannopoulos, G.A. (2017), "On the seismic response of steel buckling-restrained braced structures including soil-structure interaction", Earthq. Struct., 12(4), 469-478. https://doi.org/10.12989/eas.2017.12.4.469
  21. Garcia, R., Hajirasouliha, I. and Pilakoutas, K. (2010), "Seismic behaviour of deficient RC frames strengthened with CFRP composites", Eng. Struct., 32, 3075 - 3085. https://doi.org/10.1016/j.engstruct.2010.05.026
  22. Ghandil, M. and Behnamfar, F. (2017), "Ductility demands of MRF structures on soft soils considering soil-structure interaction", Soil Dyn. Earthq. Eng., 92, 203-214. https://doi.org/10.1016/j.soildyn.2016.09.051
  23. Guneyisi, E.M. and Azez, I. (2016), "Seismic upgrading of structures with different retrofitting methods", Earthq. Struct., 10(3), 589-611. https://doi.org/10.12989/eas.2016.10.3.589
  24. Halabia, A.M. and Zafaran, M.M. (2014), "A new modal pushover analysis approach for soil-structure interaction", Struct. Build., 168(3), 210-234.
  25. Halabian, A.M. and Emami, A.R. (2014), "Effect of foundation flexibility on response of concrete frame structures under nearfault ground motions", Struct. Build., 167(2), 123-138. https://doi.org/10.1680/stbu.12.00009
  26. Harajli, M.H. and Rteil, A.A. (2004), "Effect of confinement using fiber-reinforced polymer or fiber-reinforced concrete on seismic performance of gravity load-designed columns", ACI Struct. J., 101(1), 47-56.
  27. Harajli, M.H., Hantouche, E. and Soudki, K. (2006), "Stress-strain model for fiber-reinforced polymer jacketed concrete columns", ACI Struct. J., 103(5), 672-682.
  28. Hassani, N., Bararnia, M. and Ghodrati Amiri, G. (2018), "Effect of soil-structure interaction on inelastic displacement ratios of degrading structures", Soil Dyn. Earthq. Eng., 104, 75-87. https://doi.org/10.1016/j.soildyn.2017.10.004
  29. Hawileh, R.A., Nawaz, W., Abdalla, J.A. and Saqan, E.I. (2015), "Effect of flexural CFRP sheets on shear resistance of reinforced concrete beams", Compos. Struct., 122(Supplement C), 468-476. https://doi.org/10.1016/j.compstruct.2014.12.010
  30. ICBO (1994), Uniform Building Code, International Conference of Building Officials, Whittier, California.
  31. Jarernprasert, S. (2005), "An inelastic design approach for asymmetric structure-foundation systems", Ph.D., Carnegie Mellon University, Pittsburgh, PA.
  32. Jarernprasert, S., Bazan-Zurita, E. and Bielak, J. (2013), "Seismic soil-structure interaction response of inelastic structures", Soil Dyn. Earthq. Eng., 47, 132-143. https://doi.org/10.1016/j.soildyn.2012.08.008
  33. Jennings, P.C. and Bielak, J. (1973), "Dynamics of building-soil interaction", Bull. Seismol. Soc. Am., 63(1), 9-48.
  34. Kakaletsis, D.J. (2016), "Comparative experimental assessment of seismic rehabilitation with CFRP strips and sheets on RC frames", Earthq. Struct., 10(3), 613-628. https://doi.org/10.12989/eas.2016.10.3.613
  35. Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", J. Struct. Div., 97(7), 1969-1990
  36. Kuntal, V.S., Chellapandian, M. and Prakash, S.S. (2017), "Efficient near surface mounted CFRP shear strengthening of high strength prestressed concrete beams-An experimental study", Compos. Struct., 180(Supplement C), 16-28. https://doi.org/10.1016/j.compstruct.2017.07.095
  37. Lam, L. and Teng, J.G. (2003a), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17, 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
  38. Lam, L. and Teng, J.G. (2003b), "Design-oriented stress-strain model for FRP-confined concrete in rectangular columns", J. Reinf. Plast. Compos., 22(13), 1149-1186. https://doi.org/10.1177/0731684403035429
  39. Mason, H.B., Trombetta, N.W., Chen, Z., Bray, J.D., Hutchinson, T.C. and Kutter, B.L. (2013), "Seismic soil-foundation-structure interaction observed in geotechnical centrifuge experiments", Soil Dyn. Earthq. Eng., 48, 162-174. https://doi.org/10.1016/j.soildyn.2013.01.014
  40. Mortezaei, A., Ronagh, H.R. and Kheyroddin, A. (2010), "Seismic evaluation of FRP strengthened RC buildings subjected to nearfault ground motions having fling step", Compos. Struct., 92, 1200-1211. https://doi.org/10.1016/j.compstruct.2009.10.017
  41. Mylonakis, G. and Gazetas, G. (2000), "Seismic soil-structure interaction: beneficial or detrimental?", J. Earthq. Eng., 4(3), 277-301. https://doi.org/10.1080/13632460009350372
  42. Nakhaei, M. and Ali Ghannad, M. (2008), "The effect of soilstructure interaction on damage index of buildings", Eng. Struct., 30(6), 1491-1499. https://doi.org/10.1016/j.engstruct.2007.04.009
  43. Park, R., Priestley, M.J.N. and Gill, W.D. (1982), "Ductility of square-confined concrete columns", J. Struct. Div., 108, 929-950.
  44. Paulay, T. and Priestley, M.J.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York.
  45. PEER. (2011), PEER ground motion database. http://peer.berkeley.edu/peer_ground_motion_database.
  46. Pellegrino, C. and Modena, C. (2010), "Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement", J. Compos. Constr., 14(6), 693-705. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000127
  47. Rahai, A. and Akbarpour, H. (2014a), "Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending", Compos. Struct., 108(0), 538-546. https://doi.org/10.1016/j.compstruct.2013.09.015
  48. Rahai, A. and Akbarpour, H. (2014b), "Experimental investigation on rectangular RC columns strengthened with CFRP composites under axial load and biaxial bending", Compos. Struct., 108(Supplement C), 538-546. https://doi.org/10.1016/j.compstruct.2013.09.015
  49. Realfonzo, R. and Napoli, A. (2013), "Confining concrete members with FRP systems: Predictive vs design strain models", Compos. Struct., 104, 304-319. https://doi.org/10.1016/j.compstruct.2013.04.031
  50. Reda, R.M., Sharaky, I.A., Ghanem, M., Seleem, M.H. and Sallam, H.E.M. (2016), "Flexural behavior of RC beams strengthened by NSM GFRP Bars having different end conditions", Compos. Struct., 147(Supplement C), 131-142. https://doi.org/10.1016/j.compstruct.2016.03.018
  51. Rocca, S., Galati, N. and Nanni, A. (2009), "Interaction diagram methodology for design of FRP-confined reinforced concrete columns", Constr. Build. Mater., 23(4), 1508-1520. https://doi.org/10.1016/j.conbuildmat.2008.06.010
  52. Ronagh, H.R. and Eslami, A. (2013), "On flexural retrofitting of RC buildings using GFRP/CFRP-A comparative study", Compos. Part B, 46, 188-196. https://doi.org/10.1016/j.compositesb.2012.09.072
  53. Saez, E., Lopez-Caballero, F. and Modaressi-Farahmand-Razavi, A. (2011), "Effect of the inelastic dynamic soil-structure interaction on the seismic vulnerability assessment", Struct. Saf., 33(1), 51-63. https://doi.org/10.1016/j.strusafe.2010.05.004
  54. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  55. Shakib, H. and Fuladgar, A. (2004), "Dynamic soil-structure interaction effects on the seismic response of asymmetric buildings", Soil Dyn. Earthq. Eng., 24(5), 379-388. https://doi.org/10.1016/j.soildyn.2004.01.002
  56. Sheikh, S.A. and Khoury, S.S. (1993), "Confined concrete columns with stubs", ACI Struct. J., 90(4), 414-431.
  57. Sheikh, S.A. and Yau, G. (2002), "Seismic behavior of concrete columns confined with steel and fiber-reinforced polymers", ACI Struct. J., 99(1), 72-80.
  58. Smith, S.T., Kim, S.J. and Zhang, H. (2010), "Behavior and effectiveness of FRP wrap in the confinement of large concrete cylinders", J. Compos. Constr., 14(5), 573-582. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000119
  59. Takeda, T., Sozen, M.A. and Nielsen, N.N. (1970), "Reinforced concrete response to simulated earthquakes", J. Struct. Div., 96, 2557-2573.
  60. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behaviour of building-foundation systems", Earthq. Eng. Struct. Dyn., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203
  61. Wang, L.M. and Wu, Y.F. (2008), "Effect of corner radius on the performance of CFRP-confined square concrete columns: Test", Eng. Struct., 30, 493-505. https://doi.org/10.1016/j.engstruct.2007.04.016
  62. Wei, Y.Y. and Wu, Y.F. (2012), "Unified stress-strain model of concrete for FRP-confined columns", Constr. Build. Mater., 26, 381-392. https://doi.org/10.1016/j.conbuildmat.2011.06.037
  63. Wu, G., Wu, Z.S. and Lu, Z.T. (2007), "Design-oriented stressstrain model for concrete prisms confined with FRP composites", Constr. Build. Mater., 21(5), 1107-1121. https://doi.org/10.1016/j.conbuildmat.2005.12.014
  64. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stressstrain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/j.compositesb.2006.07.020
  65. Zamani, N. and El Shamy, U. (2014), "A microscale approach for the seismic response of MDOF structures including soilfoundation-structure interaction", J. Earthq. Eng., 18(5), 785-815. https://doi.org/10.1080/13632469.2014.904253

피인용 문헌

  1. Slope topography effect on the seismic response of mid-rise buildings considering topography-soil-structure interaction vol.20, pp.2, 2018, https://doi.org/10.12989/eas.2021.20.2.187