References
- Abazari, R. (2009), "Solution of Riccati types matrix differential equations using matrix differential transform method", J. Appl. Math. Inform., 27, 1133-1143.
- Amirpour, M., Das, R. and Saavedra Flores, E.I. (2016), "Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory", Compos. Part B: Eng., 94, 109-121. https://doi.org/10.1016/j.compositesb.2016.03.040
- Arikoglu, A. and Ozkol, I. (2005), "Solution of boundary value problems for integro-differential equations by using differential transform method", Appl. Math. Comput., 168(2), 1145-1158. https://doi.org/10.1016/j.amc.2004.10.009
- Arikoglu, A. and Ozkol, I. (2006), "Solution of differential-difference equations by using differential transform method", Appl. Math. Comput., 181(1), 153-162. https://doi.org/10.1016/j.amc.2006.01.022
- Arikoglu, A. and Ozkol, I. (2007), "Solution of fractional differential equations by using differential transform method", Chaos Solit. Fract., 34(5), 1473-1481. https://doi.org/10.1016/j.chaos.2006.09.004
- Bayat, M., Pakar, I. and Bayat, M. (2017), "Nonlinear vibration of multi-body systems with linear and nonlinear springs", Steel Compos. Struct., Int. J., 25(4), 497-503.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
- Bhrawy, A.H., Doha, E.H., Abdelkawy, M.A. and Hafez, R.M. (2015), "An efficient collocation algorithm for multidimensional wave type equations with nonlocal conservation conditions", Appl. Math. Model., 39(18), 5616-5635. https://doi.org/10.1016/j.apm.2015.01.029
- Challamel, N. (2013), "Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams", Compos. Struct., 105, 351-368. https://doi.org/10.1016/j.compstruct.2013.05.026
- de Sciarra, F.M. (2013), "A nonlocal finite element approach to nanobeams", Adv. Mech. Eng., 5, 720406. https://doi.org/10.1155/2013/720406
- Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
- Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529.
- Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Comput., 37(10-11), 6929-6939.
- Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Eringen, A.C. (1972b), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10, 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eringen, A.C. (1978), "Line crack subjected to shear", Int. J. Fracture, 14, 367-379. https://doi.org/10.1007/BF00015990
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Eringen, A.C. and Kim, B.S. (1974), "Stress concentration at the tip of a crack", Mech. Res. Commun., 1, 233-237. https://doi.org/10.1016/0093-6413(74)90070-6
- Eringen, A.C., Speziale, C.G. and Kim, B.S. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solids, 25, 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
- Ghadiri, M., Shafiei, N. and Babaei, R. (2017), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207.
- Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
- He, G., Wang, D. and Yang, X. (2016), "Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory", Acta Mechanica Solida Sinica, 29(3), 300-315. https://doi.org/10.1016/S0894-9166(16)30163-X
- Heydari, A. (2011), "Buckling of functionally graded beams with rectangular and annular sections subjected to axial compression", Int. J. Adv. Des. Manuf. Technol., 5(1), 25-31.
- Heydari, A. (2013), "Analytical solutions for buckling of functionally graded circular plates under uniform radial compression by using Bessel function", Int. J. Adv. Des. Manuf. Technol., 6(4).
- Heydari, A. (2015), "Spreading of Plastic Zones in Functionally Graded Spherical Tanks Subjected to Internal Pressure and Temperature Gradient Combinations", Iran. J. Mech. Eng. Transact. ISME, 16(2), 5-25.
- Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6), 737-748.
- Heydari, A., Jalali, A. and Nemati, A. (2017), "Buckling analysis of circular functionally graded plate under uniform radial compression including shear deformation with linear and quadratic thickness variation on the Pasternak elastic foundation", Appl. Math. Model., 41, 494-507. https://doi.org/10.1016/j.apm.2016.09.012
- Hosseini-Hashemi, S., Nazemnezhad, R. and Bedroud, M. (2014), "Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity", Appl. Math. Model., 38(14), 3538-3553. https://doi.org/10.1016/j.apm.2013.11.068
- Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78.
- Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Karlicic, D., Kozic, P. and Pavlovic, R. (2015), "Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations", J. Theor. Appl. Mech., 53.
- Karlicic, D., Kozic, P. and Pavlovic, R. (2016), "Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium", Appl. Math. Model., 40(2), 1599-1614. https://doi.org/10.1016/j.apm.2015.06.036
- Keskin, Y., Kurnaz, A., Kiris, Μ.E. and Oturanc, G. (2007), "Approximate solutions of generalized pantograph equations by the differential transform method", Int. J. Nonlinear Sci. Numer. Simul., 8(2), 159-164. https://doi.org/10.1515/IJNSNS.2007.8.2.159
- Koutsoumaris, C.C., Eptaimeros, K.G. and Tsamasphyros, G.J. (2017), "A different approach to Eringen‟s nonlocal integral stress model with applications for beams", Int. J. Solids Struct., 112, 222-238. https://doi.org/10.1016/j.ijsolstr.2016.09.007
- Li, Y.S., Ma, P. and Wang, W. (2015), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J. Intel. Mater. Syst. Struct., 27(9), 1139-1149. https://doi.org/10.1177/1045389X15585899
- Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B: Eng., 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
- Mechab, I. (2009), "Etude des structures composites en utilisant les theories d‟ordre eleve sous chargement thermomecanique", University of Sidi Bel Abbes.
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct, Int. J., 25(2), 157-175.
- Mohamed, S.A., Shanab, R.A. and Seddek, L.F. (2016), "Vibration analysis of Euler-Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method", Appl. Math. Model., 40(3), 2396-2406. https://doi.org/10.1016/j.apm.2015.08.019
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with mis-fitting Inclusions", Acta Metal, 21, 571-583. https://doi.org/10.1016/0001-6160(73)90064-3
- Oskouie, M.F. and Ansari, R. (2017), "Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects", Appl. Math. Model., 43, 337-350. https://doi.org/10.1016/j.apm.2016.11.036
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
- Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
- Ren, Q. and Tian, H. (2016), "Numerical solution of the static beam problem by Bernoulli collocation method", Appl. Math. Model., 40(21-22), 8886-8897. https://doi.org/10.1016/j.apm.2016.05.018
- Reutskiy, S.Y. (2017), "A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients", Appl. Math. Model., 45, 238-254. https://doi.org/10.1016/j.apm.2016.12.029
- Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
- Ru, C.Q. (2010), "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions", Sci. China Phys. Mech. Astron., 53(3), 536-544. https://doi.org/10.1007/s11433-010-0144-8
- Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct, Int. J., 25(4), 389-401.
- She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
- Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solids Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Stamenkovic, M., Karlicic, D., Goran, J. and Kozic, P. (2016), "Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field", J. Mech. Mater. Struct., 11(3), 279-307. https://doi.org/10.2140/jomms.2016.11.279
- Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct, Int. J., 25(3), 347-360.
- Thai, H-T. and Vo, T.P. (2012a), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
- Thai, H-T. and Vo, T.P. (2012b), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
- Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.M., Heydari, A., Wakil, K., Gebreel, A.M.S. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530.
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Wattanasakulpong, N. and Mao, Q. (2015), "Dynamic response of Timoshenko functionally graded beams with classical and nonclassical boundary conditions using Chebyshev collocation method", Compos. Struct., 119, 346-354. https://doi.org/10.1016/j.compstruct.2014.09.004
- Zhou, J.K. (1986), "Differential Transformation and its Application for Electrical Circuits".
Cited by
- Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.271
- Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601