DOI QR코드

DOI QR Code

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas (Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University)
  • 투고 : 2017.12.01
  • 심사 : 2018.06.23
  • 발행 : 2018.09.10

초록

The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

키워드

참고문헌

  1. Abazari, R. (2009), "Solution of Riccati types matrix differential equations using matrix differential transform method", J. Appl. Math. Inform., 27, 1133-1143.
  2. Amirpour, M., Das, R. and Saavedra Flores, E.I. (2016), "Analytical solutions for elastic deformation of functionally graded thick plates with in-plane stiffness variation using higher order shear deformation theory", Compos. Part B: Eng., 94, 109-121. https://doi.org/10.1016/j.compositesb.2016.03.040
  3. Arikoglu, A. and Ozkol, I. (2005), "Solution of boundary value problems for integro-differential equations by using differential transform method", Appl. Math. Comput., 168(2), 1145-1158. https://doi.org/10.1016/j.amc.2004.10.009
  4. Arikoglu, A. and Ozkol, I. (2006), "Solution of differential-difference equations by using differential transform method", Appl. Math. Comput., 181(1), 153-162. https://doi.org/10.1016/j.amc.2006.01.022
  5. Arikoglu, A. and Ozkol, I. (2007), "Solution of fractional differential equations by using differential transform method", Chaos Solit. Fract., 34(5), 1473-1481. https://doi.org/10.1016/j.chaos.2006.09.004
  6. Bayat, M., Pakar, I. and Bayat, M. (2017), "Nonlinear vibration of multi-body systems with linear and nonlinear springs", Steel Compos. Struct., Int. J., 25(4), 497-503.
  7. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  8. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
  9. Bhrawy, A.H., Doha, E.H., Abdelkawy, M.A. and Hafez, R.M. (2015), "An efficient collocation algorithm for multidimensional wave type equations with nonlocal conservation conditions", Appl. Math. Model., 39(18), 5616-5635. https://doi.org/10.1016/j.apm.2015.01.029
  10. Challamel, N. (2013), "Variational formulation of gradient or/and nonlocal higher-order shear elasticity beams", Compos. Struct., 105, 351-368. https://doi.org/10.1016/j.compstruct.2013.05.026
  11. de Sciarra, F.M. (2013), "A nonlocal finite element approach to nanobeams", Adv. Mech. Eng., 5, 720406. https://doi.org/10.1155/2013/720406
  12. Demir, C. and Civalek, O. (2017), "A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix", Compos. Struct., 168, 872-884. https://doi.org/10.1016/j.compstruct.2017.02.091
  13. Ebrahimi, F. and Barati, M.R. (2016), "A nonlocal higher-order shear deformation beam theory for vibration analysis of sizedependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
  14. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Comput., 235, 512-529.
  15. Emam, S.A. (2013), "A general nonlocal nonlinear model for buckling of nanobeams", Appl. Math. Comput., 37(10-11), 6929-6939.
  16. Eringen, A.C. (1972a), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  17. Eringen, A.C. (1972b), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10, 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
  18. Eringen, A.C. (1978), "Line crack subjected to shear", Int. J. Fracture, 14, 367-379. https://doi.org/10.1007/BF00015990
  19. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  20. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  21. Eringen, A.C. and Kim, B.S. (1974), "Stress concentration at the tip of a crack", Mech. Res. Commun., 1, 233-237. https://doi.org/10.1016/0093-6413(74)90070-6
  22. Eringen, A.C., Speziale, C.G. and Kim, B.S. (1977), "Crack-tip problem in non-local elasticity", J. Mech. Phys. Solids, 25, 339-355. https://doi.org/10.1016/0022-5096(77)90002-3
  23. Ghadiri, M., Shafiei, N. and Babaei, R. (2017), "Vibration of a rotary FG plate with consideration of thermal and Coriolis effects", Steel Compos. Struct., Int. J., 25(2), 197-207.
  24. Hadji, L., Khelifa, Z. and El Abbes, A.B. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841. https://doi.org/10.1007/s12205-015-0252-0
  25. He, G., Wang, D. and Yang, X. (2016), "Analytical solutions for free vibration and buckling of composite beams using a higher order beam theory", Acta Mechanica Solida Sinica, 29(3), 300-315. https://doi.org/10.1016/S0894-9166(16)30163-X
  26. Heydari, A. (2011), "Buckling of functionally graded beams with rectangular and annular sections subjected to axial compression", Int. J. Adv. Des. Manuf. Technol., 5(1), 25-31.
  27. Heydari, A. (2013), "Analytical solutions for buckling of functionally graded circular plates under uniform radial compression by using Bessel function", Int. J. Adv. Des. Manuf. Technol., 6(4).
  28. Heydari, A. (2015), "Spreading of Plastic Zones in Functionally Graded Spherical Tanks Subjected to Internal Pressure and Temperature Gradient Combinations", Iran. J. Mech. Eng. Transact. ISME, 16(2), 5-25.
  29. Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6), 737-748.
  30. Heydari, A., Jalali, A. and Nemati, A. (2017), "Buckling analysis of circular functionally graded plate under uniform radial compression including shear deformation with linear and quadratic thickness variation on the Pasternak elastic foundation", Appl. Math. Model., 41, 494-507. https://doi.org/10.1016/j.apm.2016.09.012
  31. Hosseini-Hashemi, S., Nazemnezhad, R. and Bedroud, M. (2014), "Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity", Appl. Math. Model., 38(14), 3538-3553. https://doi.org/10.1016/j.apm.2013.11.068
  32. Jandaghian, A.A. and Rahmani, O. (2017), "Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions", Steel Compos. Struct., Int. J., 25(1), 67-78.
  33. Karama, M., Afaq, K.S. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
  34. Karlicic, D., Kozic, P. and Pavlovic, R. (2015), "Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations", J. Theor. Appl. Mech., 53.
  35. Karlicic, D., Kozic, P. and Pavlovic, R. (2016), "Nonlocal vibration and stability of a multiple-nanobeam system coupled by the Winkler elastic medium", Appl. Math. Model., 40(2), 1599-1614. https://doi.org/10.1016/j.apm.2015.06.036
  36. Keskin, Y., Kurnaz, A., Kiris, Μ.E. and Oturanc, G. (2007), "Approximate solutions of generalized pantograph equations by the differential transform method", Int. J. Nonlinear Sci. Numer. Simul., 8(2), 159-164. https://doi.org/10.1515/IJNSNS.2007.8.2.159
  37. Koutsoumaris, C.C., Eptaimeros, K.G. and Tsamasphyros, G.J. (2017), "A different approach to Eringen‟s nonlocal integral stress model with applications for beams", Int. J. Solids Struct., 112, 222-238. https://doi.org/10.1016/j.ijsolstr.2016.09.007
  38. Li, Y.S., Ma, P. and Wang, W. (2015), "Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory", J. Intel. Mater. Syst. Struct., 27(9), 1139-1149. https://doi.org/10.1177/1045389X15585899
  39. Mantari, J.L. and Guedes Soares, C. (2014), "Optimized sinusoidal higher order shear deformation theory for the analysis of functionally graded plates and shells", Compos. Part B: Eng., 56, 126-136. https://doi.org/10.1016/j.compositesb.2013.07.027
  40. Mechab, I. (2009), "Etude des structures composites en utilisant les theories d‟ordre eleve sous chargement thermomecanique", University of Sidi Bel Abbes.
  41. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct, Int. J., 25(2), 157-175.
  42. Mohamed, S.A., Shanab, R.A. and Seddek, L.F. (2016), "Vibration analysis of Euler-Bernoulli nanobeams embedded in an elastic medium by a sixth-order compact finite difference method", Appl. Math. Model., 40(3), 2396-2406. https://doi.org/10.1016/j.apm.2015.08.019
  43. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with mis-fitting Inclusions", Acta Metal, 21, 571-583. https://doi.org/10.1016/0001-6160(73)90064-3
  44. Oskouie, M.F. and Ansari, R. (2017), "Linear and nonlinear vibrations of fractional viscoelastic Timoshenko nanobeams considering surface energy effects", Appl. Math. Model., 43, 337-350. https://doi.org/10.1016/j.apm.2016.11.036
  45. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  46. Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
  47. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  48. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020
  49. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
  50. Reddy, J.N. and Pang, S.D. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  51. Ren, Q. and Tian, H. (2016), "Numerical solution of the static beam problem by Bernoulli collocation method", Appl. Math. Model., 40(21-22), 8886-8897. https://doi.org/10.1016/j.apm.2016.05.018
  52. Reutskiy, S.Y. (2017), "A new semi-analytical collocation method for solving multi-term fractional partial differential equations with time variable coefficients", Appl. Math. Model., 45, 238-254. https://doi.org/10.1016/j.apm.2016.12.029
  53. Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932
  54. Ru, C.Q. (2010), "Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions", Sci. China Phys. Mech. Astron., 53(3), 536-544. https://doi.org/10.1007/s11433-010-0144-8
  55. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017), "A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate", Steel Compos. Struct, Int. J., 25(4), 389-401.
  56. She, G.L., Yuan, F.G., Ren, Y.R. and Xiao, W.S. (2017), "On buckling and postbuckling behavior of nanotubes", Int. J. Eng. Sci., 121, 130-142. https://doi.org/10.1016/j.ijengsci.2017.09.005
  57. Shi, G. (2007), "A new simple third-order shear deformation theory of plates", Int. J. Solids Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031
  58. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  59. Stamenkovic, M., Karlicic, D., Goran, J. and Kozic, P. (2016), "Nonlocal forced vibration of a double single-walled carbon nanotube system under the influence of an axial magnetic field", J. Mech. Mater. Struct., 11(3), 279-307. https://doi.org/10.2140/jomms.2016.11.279
  60. Tahouneh, V. (2017), "Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core", Steel Compos. Struct, Int. J., 25(3), 347-360.
  61. Thai, H-T. and Vo, T.P. (2012a), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
  62. Thai, H-T. and Vo, T.P. (2012b), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66. https://doi.org/10.1016/j.ijengsci.2012.01.009
  63. Toghroli, A., Darvishmoghaddam, E., Zandi, Y., Parvan, M., Safa, M., Abdullahi, M.M., Heydari, A., Wakil, K., Gebreel, A.M.S. and Khorami, M. (2018), "Evaluation of the parameters affecting the Schmidt rebound hammer reading using ANFIS method", Comput. Concrete, Int. J., 21(5), 525-530.
  64. Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
  65. Wattanasakulpong, N. and Mao, Q. (2015), "Dynamic response of Timoshenko functionally graded beams with classical and nonclassical boundary conditions using Chebyshev collocation method", Compos. Struct., 119, 346-354. https://doi.org/10.1016/j.compstruct.2014.09.004
  66. Zhou, J.K. (1986), "Differential Transformation and its Application for Electrical Circuits".

피인용 문헌

  1. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2018, https://doi.org/10.12989/anr.2021.10.3.271
  2. Bending analysis of the multi-phase nanocomposite reinforced circular plate via 3D-elasticity theory vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.601