References
- Affdl Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: A review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512
- Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections', Steel Compos. Struct., Int. J., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659
- Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperaturedependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., Int. J., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091
- Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882
- Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., Int. J., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
- Brischetto, S. and Tornabene, F. (2018), "Advanced GDQ models and 3D stress recovery in multilayered plates, spherical and double-curved panels subjected to transverse shear loads", Compos. Part B, 146, 244-269. https://doi.org/10.1016/j.compositesb.2018.04.019
- Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., Int. J., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251
- Fantuzzi, N., Tornabene, F., Bacciocchi, M. and Dimitri, R. (2017), "Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates", Compos. Part B, 115, 384-408. https://doi.org/10.1016/j.compositesb.2016.09.021
- Farsadi, M., O chsner, A. and Rahmandoust, M. (2013), "Numerical investigation of composite materials reinforced with waved carbon nanotubes", J. Compos. Mater., 47(11), 1425-1434. https://doi.org/10.1177/0021998312448495
- Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
- Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0
- Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2012), 62, "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003
- Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65, 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021
- Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
- Houmat, A. (2001), "A sector Fourier p-element applied to free vibration analysis of sectorial plates", J. Sound Vib., 243(2), 269-282. https://doi.org/10.1006/jsvi.2000.3410
- Kamarian, S., Yas, M.H. and Pourasghar, A. (2013), "Free vibration analysis of three-parameter functionally graded material sandwich plates resting on Pasternak foundations", J. Sandw. Struct. Mater., 15(3), 292-308. https://doi.org/10.1177/1099636213487363
- Kamarian, S., Sadighi, M. and Shakeri, M. (2014), "Free vibration response of sandwich cylindrical shells with functionally graded material face sheets resting on Pasternak foundation", J. Sandw. Struct. Mater., 16(5), 511-533. https://doi.org/10.1177/1099636214541573
- Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2015), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on Pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 1-31.
- Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F. (2016), "Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes", Int. J. Mech. Sci., 1(108-109), 157-165.
- Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X
- Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
- Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. Transactions of the ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735
- Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2
- Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", Int. J. Eng. Sci., 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
- Marin, M. (2008), "Weak Solutions in Elasticity of Dipolar Porous Materials", Math. Prob. Eng., 2008(1-8), Art. No. 158908.
- Marin, M. (2016), "An approach of a heat-flux dependent theory for micropolar porous media", Meccanica, 51(5), 1127-1133. https://doi.org/10.1007/s11012-015-0265-2
- Marin, M. and Baleanu, D. (2016), "On vibrations in thermoelasticity without energy dissipation for micropolar bodies", Bound. Value Probl., 111, 1-19.
- Marin, M., Agarwal, R.P., Mahmoud, S.R. (2013), "Modeling a microstretch thermo-elastic body with two temperatures", Abstract and Applied Analysis, 2013(1-7), Art. ID 583464.
- Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002
- McGee, O.G., Huang, C.S. and Leissa, A.W. (1995), "Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges", Int. J. Mech. Sci., 37(5), 537-566. https://doi.org/10.1016/0020-7403(94)00050-T
- Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018
- Moradi-Dastjerdi, R., Foroutan, M., Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
- Moradi-Dastjerdi, R. and Momeni-Khabisi, H. (2016), "Dynamic analysis of functionally graded nanocomposite plates reinforced by wavy carbon nanotube", Steel Compos. Struct., Int. J., 22(2).
- Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1
- Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1
- Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003
- Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., Int. J., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
- Pelletier Jacob, L. and Vel Senthil, S. (2006), "An exact solution for the steady state thermo elastic response of functionally graded orthotropic cylindrical shells", Int. J. Solid Struct., 43, 1131-1158. https://doi.org/10.1016/j.ijsolstr.2005.03.079
- Ramaiah, G.K. and Vijayakumar, K. (1974), "Natural frequencies of circumferentially truncated sector plates with simply supported straight edges", J. Sound Vib., 34(1), 53-61. https://doi.org/10.1016/S0022-460X(74)80354-8
- Ramakris, R. and Kunukkas, V.X. (1973), "Free vibration of annular sector plates", J. Sound Vib., 30(1), 127-129. https://doi.org/10.1016/S0022-460X(73)80055-0
- Reddy, J.N. (2013), An Introduction to Continuum Mechanics, (Second Edition), Cambridge University Press.
- Seok, J.W. and Tiersten, H.F. (2004), "Free vibrations of annular sector cantilever plates part 1:out-of-plane motion", J. Sound Vib., 271(3-5), 757-772. https://doi.org/10.1016/S0022-460X(03)00414-0
- Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA Journal, 43(5), 1109-1116. https://doi.org/10.2514/1.4683
- Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The Effect of Nanotube Waviness and Agglomeration on the Elastic Property of Carbon Nanotube-Reinforced Composites", J. Eng. Mater. Technol., 126(3) 250-257.
- Sobhani Aragh, B., Nasrollah Barati, A.H. and Hedayati, H. (2012), "Eshelby-Mori-Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels", Compos. B Eng., 43(4), 1943-1954. https://doi.org/10.1016/j.compositesb.2012.01.004
- Srinivasan, R.S. and Thiruvenkatachari, V. (1983), "Free vibration of annular sector plates by an integral equation technique", J. Sound Vib., 89(3), 425-432. https://doi.org/10.1016/0022-460X(83)90546-1
- Srinivasan, R.S. and Thiruvenkatachari, V. (1986), "Free vibration analysis of laminated annular sector plates", J. Sound Vib., 109(1), 89-96. https://doi.org/10.1016/S0022-460X(86)80024-4
- Swaminadham, M., Danielski, J. and Mahrenholtz, O. (1984), "Free vibration analysis of annular sector plates by holographic experiments", J. Sound Vib., 95(3), 333-340. https://doi.org/10.1016/0022-460X(84)90672-2
- Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., Int. J., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623
- Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., Int. J., 24(6), 711-726.
- Tornabene, F. and Brischetto, S. (2018), "3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells", Thin-Wall. Struct., 129, 94-124. https://doi.org/10.1016/j.tws.2018.03.021
- Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: a survey", Appl. Mech. Rev., 67(2), 1-55.
- Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
- Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017a), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Composite Part B., 115, 449-476. https://doi.org/10.1016/j.compositesb.2016.07.011
- Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E. and Reddy, J.N. (2017b), "A numerical investigation on the natural frequencies of FGM sandwich shells with variable thickness by the local generalized differential quadrature method", Appl. Sci., 7(2), 1-39.
- Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2018), "Multiscale Approach for Three-Phase CNT/Polymer/Fiber Laminated Nanocomposite Structures", Polym. Compos. DOI: 10.1002/pc.24520 [In Press]
- Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stressinduced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680
- Weidt, D. and Figiel, L. (2015), "Effect of CNT waviness and van der Waals interaction on the nonlinear compressive behaviour of epoxy/CNT nanocomposites", Compos. Sci. Technol., 115, 52-59. https://doi.org/10.1016/j.compscitech.2015.04.018
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., Int. J., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161
- Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005
- Zhou, D., Lo, S.H. and Cheung, Y.K. (2009), "3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method", J. Sound Vib., 320(1-2), 421-437. https://doi.org/10.1016/j.jsv.2008.08.001
- Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5