참고문헌
- Akbari, A., Bagri, A., Bordas, S. and Rabczuk, T. (2010), "Analysis of thermoelastic waves in a two-dimensional functionally graded materials domain by the meshless local Petrov-Galerkin (MLPG) method", Comput. Model. Eng. Sci., 65, 27-74.
- Arshad, S.H., Naeem, M.N. and Sultana, N. (2007), "Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws", J. Mech. Eng. Sci., 221, 1483-1495. https://doi.org/10.1243/09544062JMES738
- Bian, Z.G. and Wang, Y.H. (2013), "Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders", Struct. Eng. Mech., 45, 355-371. https://doi.org/10.12989/sem.2013.45.3.355
- Changcheng, D. and Yinghui, L. (2010), "Vibration characteristic analysis of functionally graded cylindrical thin shells", Proceedings of the 2nd International Conference on Mechanical and Electrical Technology, Singapore, September.
- Chen, W.Q., Bian, Z.G. and Ding, H.J. (2004a), "Threedimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells", Int. J. Mech. Sci., 46, 159-171. https://doi.org/10.1016/j.ijmecsci.2003.12.005
- Chen, W.Q., Bian, Z.G., Lv, C.F. and Ding, H.J. (2004b), "3D free vibration analysis of a functionally graded piezoelectric hollow cylinder filled with compressible fluid", Int. J. Sol. Struct., 41, 947-964. https://doi.org/10.1016/j.ijsolstr.2003.09.036
- Foroutan, M. and Moradi-Dastjerdi, R. (2011), "Dynamic analysis of functionally graded material cylinders under an impact load by a mesh-free method", Acta Mech., 219, 281-290. https://doi.org/10.1007/s00707-011-0448-4
- Ghadiri Rad, M.H., Shahabian, F. and Hosseini, S.M. (2015), "A meshless local Petrov-Galerkin method for nonlinear dynamic analyses of hyper-elastic FG thick hollow cylinder with Rayleigh damping", Acta Mech., 226(5), 1497-1513. https://doi.org/10.1007/s00707-014-1266-2
- Ghannad, M., Zamani Nejad, M., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43, 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- Hosseini, S.M. (2014), "Application of meshless local Petrov-Galerkin (MLPG) and generalized finite difference (GFD) methods in coupled thermoelasticity analysis of thick hollow cylinder", Encyclop. Therm. Stress., 41, 216-224.
- Hosseini, S.M. and Abolbashari, M.H. (2010), "General analytical solution for elastic radial wave propagation and dynamic analysis of functionally graded thick hollow cylinders subjected to impact loading", Acta Mech., 212, 1-19. https://doi.org/10.1007/s00707-009-0237-5
- Hosseini, S.M. and Shahabian, F. (2011a), "Stochastic assessment of thermo-elastic wave propagation in functionally graded materials (FGMs) with Gaussian uncertainty in constitutive mechanical properties", J. Therm. Stress., 34, 1071-1099. https://doi.org/10.1080/01495739.2011.605995
- Hosseini, S.M. and Shahabian, F. (2011b), "Transient analysis of thermo-elastic waves in thick hollow cylinders using a stochastic hybrid numerical method, considering Gaussian mechanical properties", Appl. Math. Modell., 35, 4697-4714. https://doi.org/10.1016/j.apm.2011.03.057
- Hosseini, S.M., Akhlaghi, M. and Shakeri, M. (2007), "Dynamic response and radial wave propagation velocity in thick hollow cylinder made of functionally graded materials", Eng. Comput., 24, 288-303. https://doi.org/10.1108/02644400710735043
- Hosseini, S.M., Shahabian, F., Sladek, J. and Sladek, V. (2011), "Stochastic meshless local Petrov-Galerkin (MLPG) method for thermo-elastic wave propagation analysis in functionally graded thick hollow cylinders", Comput. Model. Eng. Sci., 71(1), 39-66.
- Huang, H., Han, Q., Feng, N. and Fan, X. (2011), "Buckling of functionally graded cylindrical shells under combined loads", Mech. Adv. Mater. Struct., 18(5), 337-346. https://doi.org/10.1080/15376494.2010.516882
- Khosravifard, A., Hematiyan, M.R. and Marin, L. (2011), "Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method", Appl. Math. Modell., 35, 4157-4174. https://doi.org/10.1016/j.apm.2011.02.039
- Moradi-Dastjerdi, R., Foroutan, M. and Pourasghar, A. (2013), "Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method", Mater. Des., 44, 256-266. https://doi.org/10.1016/j.matdes.2012.07.069
- Najibi, A. and Shojaeefard, M.H. (2016), "Elastic mechanical stress analysis in a 2D-FGM thick finite length hollow cylinder with newly developed material model", Acta Mech. Sol. Sinic., 29, 178-191. https://doi.org/10.1016/S0894-9166(16)30106-9
- Park, K.J. and Kim, Y.W. (2016), "Vibration characteristics of fluid-conveying FGM cylindrical shells resting on Pasternak elastic foundation with an oblique edge", Thin-Wall. Struct., 106, 407-419. https://doi.org/10.1016/j.tws.2016.05.011
- Rahimi, G.H., Ansari, R. and Hemmatnezhad, M. (2011), "Vibration of functionally graded cylindrical shells with ring support", Sci. Iranic., 18(6), 1313-1320. https://doi.org/10.1016/j.scient.2011.11.026
- Rezaei Mojdehi, A., Darvizeh, A., Basti, A. and Rajabi, H. (2011), "Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov-Galerkin (MLPG) method", Eng. Analy. Bound. Elem., 35, 1168-1180. https://doi.org/10.1016/j.enganabound.2011.05.011
- Shakeri, M., Akhlaghi, M. and Hoseini, S.M. (2006), "Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", Compos. Struct., 76, 174-181. https://doi.org/10.1016/j.compstruct.2006.06.022
- Shen, H., Paidoussis, M.P., Wen, J., Yu, D. and Wen, X. (2014), "The beam-mode stability of periodic functionally graded material shells conveying fluid", J. Sound Vibr., 333, 2735-2749. https://doi.org/10.1016/j.jsv.2014.01.002
- Sladek, J., Sladek, V., Stanak, P., Zhang, C. and Wunsche, M. (2013), "Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method", Eng. Struct., 47, 81-89. https://doi.org/10.1016/j.engstruct.2012.02.034
- Tu, T.M. and Loi, N.V. (2016), "Vibration analysis of rotating functionally graded cylindrical shells with orthogonal stiffeners", Lat. Am. J. Sol. Struct., 13(15), 2952-2969. https://doi.org/10.1590/1679-78252934
- Ugural, A.C. and Fenster, S.K. (2003), Advanced Strength and Applied Elasticity, 4th Edition, Prentice Hall.
- Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22, 161-182. https://doi.org/10.12989/scs.2016.22.1.161
- Xiang, S. and Chen, Y. (2014), "meshless local collocation method for natural frequencies and mode shapes of laminated composite shells", Struct. Eng. Mech., 51, 893-907. https://doi.org/10.12989/sem.2014.51.6.893
- Xiao, J.R., Batra, R.C., Gilhooley, D.F., Gillespie Jr, J.W. and McCarthy, M.A. (2007), "Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions", Comput. Meth. Appl. Mech. Eng., 196, 979-987. https://doi.org/10.1016/j.cma.2006.08.002
- Zhao, X., Liu, G.R., Dai, K.Y., Zhong, Z.H., Li, G.Y. and Han, X. (2008), "Geometric nonlinear analysis of plates and cylindrical shells via a linearly conforming radial point interpolation method", Comput. Mech., 42, 133-144. https://doi.org/10.1007/s00466-008-0242-x
피인용 문헌
- Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model vol.35, pp.1, 2020, https://doi.org/10.12989/scs.2020.35.1.077