DOI QR코드

DOI QR Code

Buckling load optimization of laminated plates resting on Pasternak foundation using TLBO

  • Topal, Umut (Department of Civil Engineering, Faculty of Technology, Karadeniz Technical University) ;
  • Vo-Duy, Trung (Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University) ;
  • Dede, Tayfun (Department of Civil Engineering, Karadeniz Technical University) ;
  • Nazarimofrad, Ebrahim (Department of Civil Engineering, Bu Ali Sina University)
  • 투고 : 2018.04.17
  • 심사 : 2018.07.03
  • 발행 : 2018.09.25

초록

This paper deals with the maximization of the critical buckling load of simply supported antisymmetric angle-ply plates resting on Pasternak foundation subjected to compressive loads using teaching learning based optimization method (TLBO). The first order shear deformation theory is used to obtain governing equations of the laminated plate. In the present optimization problem, the objective function is to maximize the buckling load factor and the design variables are the fibre orientation angles in the layers. Computer programming is developed in the MATLAB environment to estimate optimum stacking sequences of laminated plates. A comparison also has been performed between the TLBO, genetic algorithm (GA) and differential evolution algorithm (DE). Some examples are solved to show the applicability and usefulness of the TLBO for maximizing the buckling load of the plate via finding optimum stacking sequences of the plate. Additionally, the influences of different number of layers, plate aspect ratios, foundation parameters and load ratios on the optimal solutions are investigated.

키워드

참고문헌

  1. Adali, S., Lene, F., Duvaut, G. and Chiaruttini, V. (2003), "Optimization of laminated composites subject to uncertain buckling loads", Compos. Struct., 62, 261-269. https://doi.org/10.1016/j.compstruct.2003.09.024
  2. Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26, 1907-1919. https://doi.org/10.1177/0731684407081766
  3. Artar, M. (2016), "Optimum design of braced steel frames via teaching learning-based optimization", Steel Compos. Struct., 22, 733-744. https://doi.org/10.12989/scs.2016.22.4.733
  4. Artar, M., Catar, R. and Daloglu, A.T. (2017), "Optimum design of steel bridges including corrosion effect using TLBO", Struct. Eng. Mech., 63, 607-615.
  5. Aymerich, F. and Serra, M. (2008), "Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) metaheuristic", Compos. Part A, 39, 262-272. https://doi.org/10.1016/j.compositesa.2007.10.011
  6. Daloglu, A.T., Artar, M., Ozgan, K. and Karakas, A.I. (2018), "Optimum design of braced steel space frames including soilstructure interaction via Teaching-learning-based optimization and Harmony search algorithms", Adv. Civil Eng.
  7. De Almeida, F.S. (2016), "Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm", Compos. Struct., 143, 287-299. https://doi.org/10.1016/j.compstruct.2016.02.034
  8. Deveci, H.A., Aydin, L. and Artem, H.S. (2016), "Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint", J. Reinf. Plast. Compos., 35, 1233-1247. https://doi.org/10.1177/0731684416646860
  9. Ehsani, A. and Rezaeepazhand, J. (2016), "Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm", Int. J. Mech. Sci., 119, 97-106. https://doi.org/10.1016/j.ijmecsci.2016.09.028
  10. Erdal, O. and Sonmez, F.O. (2005), "Optimum design of composite laminates for maximum buckling load capacity using simulated annealing", Compos. Struct., 71, 45-52. https://doi.org/10.1016/j.compstruct.2004.09.008
  11. Hajmohammad, M.H., Salari, M., Hashemi, S.A. and Esfe, M.H. (2013), "Optimization of stacking sequence of composite laminates for optimizing buckling load by neural network and genetic algorithm", Ind. J. Sci. Technol., 6, 5070-5077.
  12. Henrichsen, S.R., Lindgaard, E. and Lund, E. (2015), "Robust buckling optimization of laminated composite structures using discrete material optimization considering "worst" shape imperfections", Thin Walled Struct., 94, 624-635. https://doi.org/10.1016/j.tws.2015.05.004
  13. Huu, V.H., Thi, T.D.D., Trung, H.D., Duy, T.V. and Thoi, T.N. (2016), "Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method", Compos. Struct., 146, 132-147. https://doi.org/10.1016/j.compstruct.2016.03.016
  14. Jing, Z., Fan, X. and Sun, Q. (2015), "Stacking sequence optimization of composite laminates for maximum buckling load using permutation search algorithm", Compos. Struct., 121, 225-236. https://doi.org/10.1016/j.compstruct.2014.10.031
  15. Karakaya, S. and Soykasap, O. (2009), "Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm", Struct. Multidisc. Optim., 39, 477-486. https://doi.org/10.1007/s00158-008-0344-2
  16. Kaveh, A. (2017), Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd Edition, Springer International Publishing, Switzerland.
  17. Kaveh, A. and Farhoudi, N. (2013), "A new optimization method: Dolphin echolocation", Adv. Eng. Softw., 59, 53-70. https://doi.org/10.1016/j.advengsoft.2013.03.004
  18. Kaveh, A. and Ghazaan, M.I. (2017), "Vibrating particles system algorithm for truss optimization with multiple natural frequency constraints", Acta Mech., 228, 307-322. https://doi.org/10.1007/s00707-016-1725-z
  19. Kaveh, A. and Khayatazad, M. (2012), "A new meta-heuristic method: Ray optimization", Compos. Struct., 112-113, 283-294. https://doi.org/10.1016/j.compstruc.2012.09.003
  20. Kaveh, A. and Mahdavi, V.R. (2014), "Colliding bodies optimization: A novel meta-heuristic method", Compos. Struct., 139, 18-27. https://doi.org/10.1016/j.compstruc.2014.04.005
  21. Kaveh, A., Dadras, A. and Malek, N.G. (2018), "Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm", Acta Mech., 229, 1551-1566. https://doi.org/10.1007/s00707-017-2068-0
  22. Moez, H., Kaveh, A. and Taghizdieh, N. (2016), "Natural forest regeneration algorithm: A new meta-heuristic", Iran. J. Sci. Technol., 40, 311-326.
  23. Narita, Y. and Turvey, G.J. (2004), "Maximizing the buckling loads of symmetrically laminated composite rectangular plates using a layerwise optimization approach", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 218, 681-691. https://doi.org/10.1243/0954406041319554
  24. Nicholas, P.E., Padmanaban, K.P. and Vasudevan, D. (2014), "Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA", Struct. Eng. Mech., 52, 815-827. https://doi.org/10.12989/sem.2014.52.4.815
  25. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teachinglearning-based optimization: A novel method for constrained mechanical design optimization problems", Comput. Des., 43, 303-315.
  26. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells-Theory and Analysis, 2nd Edition, CRC Press.
  27. Sebaey, T.A., Lopes, C.S., Blanco, N. and Costa, J. (2011), "Ant colony optimization for dispersed laminated composite panels under biaxial loading", Compos. Struct., 94, 31-36. https://doi.org/10.1016/j.compstruct.2011.07.021
  28. Setoodeh, A.R. and Karami, G. (2004), "Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM", Eng. Struct., 26, 211-220. https://doi.org/10.1016/j.engstruct.2003.09.009
  29. Soremekun, G., Gurdal, Z., Haftka, R.T. and Watson, L.D. (2011), "Composite laminate design optimization by genetic algorithm with generalized elitist selection", Comput. Struct., 79, 131-143.
  30. Storn, R. and Price, K. (1997), "Differentiale evolution-a simple and efficient heuristic for global optimization over continuous spaces", J. Glob. Optim., 11, 341-359. https://doi.org/10.1023/A:1008202821328
  31. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62, 107-111. https://doi.org/10.12989/sem.2017.62.1.107
  32. Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech., 52, 755-765. https://doi.org/10.12989/sem.2014.52.4.755
  33. Vosoughi, A.R., Darabi, A. Forkhorji, H.D. (2017), "Optimum stacking sequences of thick laminated composite plates for maximizing buckling load using FE-GAs-PSO", Compos. Struct., 159, 361-367. https://doi.org/10.1016/j.compstruct.2016.09.085
  34. Vosoughi, A.R., Darabi, A., Anjabin, N. and Topal, U. (2017), "A mixed finite element and improved genetic algorithm method for maximizing buckling load of stiffened laminated composite plates", Aerosp. Sci. Technol., 70, 378-387. https://doi.org/10.1016/j.ast.2017.08.022
  35. Xiang, Y., Kitipornchai, S. and Liew, K.M. (1996), "Buckling and vibration of thick laminates on Pasternak foundations", J. Eng. Mech., 122, 54-63. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(54)

피인용 문헌

  1. Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795