참고문헌
- Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711
- Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe.
- Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
- Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31), A2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
- Bursi, O.S., Gonzalez-Buelga, A., Vulcan, L., Neild, S.A. and Wagg, D.J. (2008), "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing", Earthq. Eng. Struct. Dyn., 37(3), 339-360. https://doi.org/10.1002/eqe.757
- Chang, S.Y. (2004), "Unconditional stability for explicit pseudodynamic testing", Struct. Eng. Mech., 18(4), 411-428. https://doi.org/10.12989/sem.2004.18.4.411
- Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
- Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
- Chang, S.Y. (2010), "A new family of explicit methods for linear structural dynamics", Comput. Struct., 88(11), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
- Chang, S.Y. (2014), "A family of noniterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
- Chang, S.Y. (2014), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 159-178. https://doi.org/10.12989/eas.2014.7.2.159
- Chang, S.Y. (2015), "Comparisons of structure-dependent explicit methods for time integration", Int. J. Struct. Stab. Dyn., 15(3), 1450055. https://doi.org/10.1142/S0219455414500552
- Chang, S.Y. (2016), "A virtual parameter to improve stability properties for an integration method", Eartq. Struct., 11(2), 297-313. https://doi.org/10.12989/eas.2016.11.2.297
- Chang, S.Y. (2018), "Performances of non-dissipative structuredependent integration methods", Struct. Eng. Mech., 65(1), 91-98. https://doi.org/10.12989/SEM.2018.65.1.091
- Chang, S.Y. and Liao, W.I. (2005), "An unconditionally stable explicit method for structural dynamics", J. Earthq. Eng., 9(3), 349-370. https://doi.org/10.1080/13632460509350546
- Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815
- Chang, S.Y., Wu, T.H., Tran, N.C. and Yang, Y.S. (2017), "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudodynamic tests", Exper. Techniq., 41(1), 19-36. https://doi.org/10.1007/s40799-016-0151-4
- Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., 134(8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676)
- Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. Dyn., 38(1), 23-44. https://doi.org/10.1002/eqe.838
- Chopra, A.K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall.
- Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", Int. J. Numer. Meth. Eng., 37(23), 3961-3976. https://doi.org/10.1002/nme.1620372303
- Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
- Felippa, C.A. and Park, K.C. (1979), "Direct time integration methods in nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 17, 277-313.
- Fung, T.C. (1999), "Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-second-order equations", Int. J. Numer. Meth. Eng., 45(8), 971-1006. https://doi.org/10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
- Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progr. Struct. Eng. Mater., 5(3), 167-180. https://doi.org/10.1002/pse.149
- Ghassemieh, M., Gholampour, A.A. and Massah, S.R. (2016), "Application of weight functions in nonlinear analysis of structural dynamics problems", Int. J. Comput. Meth., 13(1), 1650005. https://doi.org/10.1142/S0219876216500055
- Golley, B.W. (1996), "A time-stepping procedure for structural dynamics using gauss point collocation", Int. J. Numer. Meth. Eng., 39(23), 3985-3998. https://doi.org/10.1002/(SICI)1097-0207(19961215)39:23<3985::AID-NME33>3.0.CO;2-7
- Graham, A. (1982), Kronecker Products and Matrix Calculus: With Applications, John Wiley and Sons, Inc.
- Hahn, G.D. (1991), "A modified Euler method for dynamic analyses", Int. J. Numer. Meth. Eng., 32(5), 943-955. https://doi.org/10.1002/nme.1620320502
- Hilber, H.M., Hughes, T.J. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306
- Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Meth. Appl. Mech. Eng. 137(2), 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5
- Klarmann, S. and Wagner, W. (2015), "Enhanced studies on a composite time integration scheme in linear and non-linear dynamics", Comput. Mech., 55(3), 455-468. https://doi.org/10.1007/s00466-014-1096-z
- Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43(9), 1361-1380. https://doi.org/10.1002/eqe.2401
- Kuo, S.R. and Yau, J.D. (2011), "A fast and accurate step-by-step solution procedure for direct integration", Int. J. Struct. Stab. Dyn., 11(3), 473-493. https://doi.org/10.1142/S0219455411004178
- Kuo, S.R., Yau, J.D. and Yang, Y.B. (2012), "A robust timeintegration algorithm for solving nonlinear dynamic problems with large rotations and displacements", Int. J. Struct. Stab. Dyn., 12(6), 1250051. https://doi.org/10.1142/S0219455412500514
- Levine, W.S. (1996), The Control Handbook, CRC Press.
- Liu, T., Li, Q. and Zhao, C. (2013), "An efficient time-integration method for nonlinear dynamic analysis of solids and structures", Sci. Chin.: Phys., Mechan Astron, 56, 798-804. https://doi.org/10.1007/s11433-013-5021-9
- Mansur, W.J., Carrer, J.A.M., Ferreira, W.G., De Gouveia, A.C. and Venancio-Filho, F. (2000), "Time-segmented frequencydomain analysis for non-linear multi-degree-of-freedom structural systems", J. Sound Vibr., 237(3), 457-475. https://doi.org/10.1006/jsvi.2000.3066
- Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504. https://doi.org/10.12989/SEM.2017.64.4.495
-
Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Structure-dependent improved Wilson-
$\theta$ method with higher order of accuracy and controllable amplitude decay", Appl. Math. Modell., 52, 417-436. https://doi.org/10.1016/j.apm.2017.07.058 - Nguyen, T.L., Sansour, C. and Hjiaj, M. (2017), "Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams", J. Sound Vibr., 396, 144-171. https://doi.org/10.1016/j.jsv.2016.12.029
- Park, K.C. (1977), "Practical aspects of numerical time integration", Comput. Struct., 7(3), 343-353. https://doi.org/10.1016/0045-7949(77)90072-4
- Paz, M. and Leigh, W. (1985), Structural Dynamics.
- Pezeshk, S. and Camp, C.V. (1995), "An explicit time-integration method for damped structural systems", Struct. Eng. Mech., 3(2), 145-162. https://doi.org/10.12989/sem.1995.3.2.145
- Razavi, S.H., Abolmaali, A. and Ghassemieh, M. (2007), "A weighted residual parabolic acceleration time integration method for problems in structural dynamics", Comput. Meth. Appl. Math., 7(3), 227-238.
- Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method", Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
- Rezaiee-Pajand, M. and Estiri, H. (2016), "Computing the structural buckling limit load by using dynamic relaxation method", Int. J. Non-Lin. Mech., 81, 245-260. https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
- Rezaiee-Pajand, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16(5), 1550009. https://doi.org/10.1142/S0219455415500091
- Rezaiee-Pajand, M. and Hashemian, M. (2017), "Modified differential transformation method for solving nonlinear dynamic problems", Appl. Math. Modell., 47, 76-95. https://doi.org/10.1016/j.apm.2017.03.003
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2015), "More accurate and stable time integration scheme", Eng. Comput., 31(4), 791-812. https://doi.org/10.1007/s00366-014-0390-x
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2016), "A new explicit time integration scheme for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 16(9), 1550054. https://doi.org/10.1142/S0219455415500546
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math.
- Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "An accurate predictor-corrector time integration method for structural dynamics", Int. J. Steel Struct., 17(3), 1033-1047. https://doi.org/10.1007/s13296-017-9014-9
- Rezaiee-Pajand, M. and Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", J. Mech. Eng. Sci., 224(10), 2097-2108. https://doi.org/10.1243/09544062JMES2093
- Rezaiee-Pajand, M., Hashemian, M. and Bohluly, A. (2017), "A novel time integration formulation for nonlinear dynamic analysis", Aerosp. Sci. Technol., 69, 625-635. https://doi.org/10.1016/j.ast.2017.07.032
- Rio, G., Soive, A. and Grolleau, V. (2005), "Comparative study of numerical explicit time integration algorithms", Adv. Eng. Softw., 36(4), 252-265. https://doi.org/10.1016/j.advengsoft.2004.10.011
- Saka, M.P. (1990), "Optimum design of pin-jointed steel structures with practical applications", J. Struct. Eng., 116(10), 2599-2620. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)
- Shishvan, S.S., Noorzad, A. and Ansari, A. (2009), "A time integration algorithm for linear transient analysis based on the reproducing kernel method", Comput. Meth. Appl. Mech. Eng., 198(41), 3361-3377. https://doi.org/10.1016/j.cma.2009.06.011
- Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5
- Tang, Y. and Lou, M. (2017), " New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7), 04017029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235
- Torkamani, M.A. and Shieh, J.H. (2011), "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526. https://doi.org/10.1016/j.engstruct.2011.07.015
- Turyn, L. (2013), Advanced Engineering Mathematics, CRC Press.
- Verma, M., Rajasankar, J. and Iyer, N.R. (2015), "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing", Earthq. Struct., 8(6), 1325-1348. https://doi.org/10.12989/eas.2015.8.6.1325
- Wang, M. and Au, F.T.K. (2008), "Precise integration methods based on the Chebyshev polynomial of the first kind", Earthq. Eng. Eng. Vibr., 7(2), 207-216. https://doi.org/10.1007/s11803-008-0837-4
- Wang, M.F. and Au, F.T.K. (2009), "On the precise integration methods based on Pade approximations", Comput. Struct., 87(5), 380-390. https://doi.org/10.1016/j.compstruc.2008.11.004
- Wen, W.B., Jian, K.L. and Luo, S.M. (2014), "An explicit time integration method for structural dynamics using septuple Bspline functions", Int. J. Numer. Meth. Eng., 97(9), 629-657. https://doi.org/10.1002/nme.4599
- Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, D.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186. https://doi.org/10.1016/j.compstruc.2016.11.018
- Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operatorsplitting method for real-time substructure testing", Earthq. Eng. Struct. Dyn., 35(3), 293-314. https://doi.org/10.1002/eqe.519
- Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", Int. J. Struct. Stab. Dyn., 13(3), 1250068. https://doi.org/10.1142/S021945541250068X
- Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39(24), 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
- Zheng, M., Yuan, Z., Tong, Q., Zhang, G. and Zhu, W. (2017), "A novel unconditionally stable explicit integration method for finite element method", Vis. Comput., 1-13.
피인용 문헌
- Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2018, https://doi.org/10.12989/sem.2021.79.4.473