DOI QR코드

DOI QR Code

Highly accurate family of time integration method

  • Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi university of Mashhad) ;
  • Esfehani, S.A.H. (Department of Civil Engineering, Ferdowsi university of Mashhad) ;
  • Karimi-Rad, Mahdi (Department of Civil Engineering, Ferdowsi university of Mashhad)
  • Received : 2017.10.26
  • Accepted : 2018.07.04
  • Published : 2018.09.25

Abstract

In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.

Keywords

References

  1. Alamatian, J. (2013), "New implicit higher order time integration for dynamic analysis", Struct. Eng. Mech., 48(5), 711-736. https://doi.org/10.12989/sem.2013.48.5.711
  2. Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe.
  3. Bathe, K.J. (2007), "Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme", Comput. Struct., 85(7), 437-445. https://doi.org/10.1016/j.compstruc.2006.09.004
  4. Bathe, K.J. and Baig, M.M.I. (2005), "On a composite implicit time integration procedure for nonlinear dynamics", Comput. Struct., 83(31), A2513-2524. https://doi.org/10.1016/j.compstruc.2005.08.001
  5. Bursi, O.S., Gonzalez-Buelga, A., Vulcan, L., Neild, S.A. and Wagg, D.J. (2008), "Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing", Earthq. Eng. Struct. Dyn., 37(3), 339-360. https://doi.org/10.1002/eqe.757
  6. Chang, S.Y. (2004), "Unconditional stability for explicit pseudodynamic testing", Struct. Eng. Mech., 18(4), 411-428. https://doi.org/10.12989/sem.2004.18.4.411
  7. Chang, S.Y. (2007), "Improved explicit method for structural dynamics", J. Eng. Mech., 133(7), 748-760. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:7(748)
  8. Chang, S.Y. (2009), "An explicit method with improved stability property", Int. J. Numer. Meth. Eng., 77(8), 1100-1120. https://doi.org/10.1002/nme.2452
  9. Chang, S.Y. (2010), "A new family of explicit methods for linear structural dynamics", Comput. Struct., 88(11), 755-772. https://doi.org/10.1016/j.compstruc.2010.03.002
  10. Chang, S.Y. (2014), "A family of noniterative integration methods with desired numerical dissipation", Int. J. Numer. Meth. Eng., 100(1), 62-86. https://doi.org/10.1002/nme.4720
  11. Chang, S.Y. (2014), "Numerical dissipation for explicit, unconditionally stable time integration methods", Earthq. Struct., 7(2), 159-178. https://doi.org/10.12989/eas.2014.7.2.159
  12. Chang, S.Y. (2015), "Comparisons of structure-dependent explicit methods for time integration", Int. J. Struct. Stab. Dyn., 15(3), 1450055. https://doi.org/10.1142/S0219455414500552
  13. Chang, S.Y. (2016), "A virtual parameter to improve stability properties for an integration method", Eartq. Struct., 11(2), 297-313. https://doi.org/10.12989/eas.2016.11.2.297
  14. Chang, S.Y. (2018), "Performances of non-dissipative structuredependent integration methods", Struct. Eng. Mech., 65(1), 91-98. https://doi.org/10.12989/SEM.2018.65.1.091
  15. Chang, S.Y. and Liao, W.I. (2005), "An unconditionally stable explicit method for structural dynamics", J. Earthq. Eng., 9(3), 349-370. https://doi.org/10.1080/13632460509350546
  16. Chang, S.Y., Wu, T.H. and Tran, N.C. (2015), "A family of dissipative structure-dependent integration methods", Struct. Eng. Mech., 55(4), 815-837. https://doi.org/10.12989/sem.2015.55.4.815
  17. Chang, S.Y., Wu, T.H., Tran, N.C. and Yang, Y.S. (2017), "Applications of a family of unconditionally stable, dissipative, explicit methods to pseudodynamic tests", Exper. Techniq., 41(1), 19-36. https://doi.org/10.1007/s40799-016-0151-4
  18. Chen, C. and Ricles, J.M. (2008), "Development of direct integration algorithms for structural dynamics using discrete control theory", J. Eng. Mech., 134(8), 676-683. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:8(676)
  19. Chen, C., Ricles, J.M., Marullo, T.M. and Mercan, O. (2009), "Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm", Earthq. Eng. Struct. Dyn., 38(1), 23-44. https://doi.org/10.1002/eqe.838
  20. Chopra, A.K. (2001), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall.
  21. Chung, J. and Lee, J.M. (1994), "A new family of explicit time integration methods for linear and non-linear structural dynamics", Int. J. Numer. Meth. Eng., 37(23), 3961-3976. https://doi.org/10.1002/nme.1620372303
  22. Dokainish, M.A. and Subbaraj, K. (1989), "A survey of direct time-integration methods in computational structural dynamics-I. Explicit methods", Comput. Struct., 32(6), 1371-1386. https://doi.org/10.1016/0045-7949(89)90314-3
  23. Felippa, C.A. and Park, K.C. (1979), "Direct time integration methods in nonlinear structural dynamics", Comput. Meth. Appl. Mech. Eng., 17, 277-313.
  24. Fung, T.C. (1999), "Weighting parameters for unconditionally stable higher-order accurate time step integration algorithms. Part 2-second-order equations", Int. J. Numer. Meth. Eng., 45(8), 971-1006. https://doi.org/10.1002/(SICI)1097-0207(19990720)45:8<971::AID-NME613>3.0.CO;2-M
  25. Fung, T.C. (2003), "Numerical dissipation in time-step integration algorithms for structural dynamic analysis", Progr. Struct. Eng. Mater., 5(3), 167-180. https://doi.org/10.1002/pse.149
  26. Ghassemieh, M., Gholampour, A.A. and Massah, S.R. (2016), "Application of weight functions in nonlinear analysis of structural dynamics problems", Int. J. Comput. Meth., 13(1), 1650005. https://doi.org/10.1142/S0219876216500055
  27. Golley, B.W. (1996), "A time-stepping procedure for structural dynamics using gauss point collocation", Int. J. Numer. Meth. Eng., 39(23), 3985-3998. https://doi.org/10.1002/(SICI)1097-0207(19961215)39:23<3985::AID-NME33>3.0.CO;2-7
  28. Graham, A. (1982), Kronecker Products and Matrix Calculus: With Applications, John Wiley and Sons, Inc.
  29. Hahn, G.D. (1991), "A modified Euler method for dynamic analyses", Int. J. Numer. Meth. Eng., 32(5), 943-955. https://doi.org/10.1002/nme.1620320502
  30. Hilber, H.M., Hughes, T.J. and Taylor, R.L. (1977), "Improved numerical dissipation for time integration algorithms in structural dynamics", Earthq. Eng. Struct. Dyn., 5(3), 283-292. https://doi.org/10.1002/eqe.4290050306
  31. Hulbert, G.M. and Chung, J. (1996), "Explicit time integration algorithms for structural dynamics with optimal numerical dissipation", Comput. Meth. Appl. Mech. Eng. 137(2), 175-188. https://doi.org/10.1016/S0045-7825(96)01036-5
  32. Klarmann, S. and Wagner, W. (2015), "Enhanced studies on a composite time integration scheme in linear and non-linear dynamics", Comput. Mech., 55(3), 455-468. https://doi.org/10.1007/s00466-014-1096-z
  33. Kolay, C. and Ricles, J.M. (2014), "Development of a family of unconditionally stable explicit direct integration algorithms with controllable numerical energy dissipation", Earthq. Eng. Struct. Dyn., 43(9), 1361-1380. https://doi.org/10.1002/eqe.2401
  34. Kuo, S.R. and Yau, J.D. (2011), "A fast and accurate step-by-step solution procedure for direct integration", Int. J. Struct. Stab. Dyn., 11(3), 473-493. https://doi.org/10.1142/S0219455411004178
  35. Kuo, S.R., Yau, J.D. and Yang, Y.B. (2012), "A robust timeintegration algorithm for solving nonlinear dynamic problems with large rotations and displacements", Int. J. Struct. Stab. Dyn., 12(6), 1250051. https://doi.org/10.1142/S0219455412500514
  36. Levine, W.S. (1996), The Control Handbook, CRC Press.
  37. Liu, T., Li, Q. and Zhao, C. (2013), "An efficient time-integration method for nonlinear dynamic analysis of solids and structures", Sci. Chin.: Phys., Mechan Astron, 56, 798-804. https://doi.org/10.1007/s11433-013-5021-9
  38. Mansur, W.J., Carrer, J.A.M., Ferreira, W.G., De Gouveia, A.C. and Venancio-Filho, F. (2000), "Time-segmented frequencydomain analysis for non-linear multi-degree-of-freedom structural systems", J. Sound Vibr., 237(3), 457-475. https://doi.org/10.1006/jsvi.2000.3066
  39. Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Extended implicit integration process by utilizing nonlinear dynamics in finite element", Struct. Eng. Mech., 64(4), 495-504. https://doi.org/10.12989/SEM.2017.64.4.495
  40. Mohammadzadeh, S., Ghassemieh, M. and Park, Y. (2017), "Structure-dependent improved Wilson-$\theta$ method with higher order of accuracy and controllable amplitude decay", Appl. Math. Modell., 52, 417-436. https://doi.org/10.1016/j.apm.2017.07.058
  41. Nguyen, T.L., Sansour, C. and Hjiaj, M. (2017), "Long-term stable time integration scheme for dynamic analysis of planar geometrically exact Timoshenko beams", J. Sound Vibr., 396, 144-171. https://doi.org/10.1016/j.jsv.2016.12.029
  42. Park, K.C. (1977), "Practical aspects of numerical time integration", Comput. Struct., 7(3), 343-353. https://doi.org/10.1016/0045-7949(77)90072-4
  43. Paz, M. and Leigh, W. (1985), Structural Dynamics.
  44. Pezeshk, S. and Camp, C.V. (1995), "An explicit time-integration method for damped structural systems", Struct. Eng. Mech., 3(2), 145-162. https://doi.org/10.12989/sem.1995.3.2.145
  45. Razavi, S.H., Abolmaali, A. and Ghassemieh, M. (2007), "A weighted residual parabolic acceleration time integration method for problems in structural dynamics", Comput. Meth. Appl. Math., 7(3), 227-238.
  46. Rezaiee-Pajand, M. and Alamatian, J. (2008), "Numerical time integration for dynamic analysis using a new higher order predictor-corrector method", Eng. Comput., 25(6), 541-568. https://doi.org/10.1108/02644400810891544
  47. Rezaiee-Pajand, M. and Estiri, H. (2016), "Computing the structural buckling limit load by using dynamic relaxation method", Int. J. Non-Lin. Mech., 81, 245-260. https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
  48. Rezaiee-Pajand, M. and Hashemian, M. (2016), "Time integration method based on discrete transfer function", Int. J. Struct. Stab. Dyn., 16(5), 1550009. https://doi.org/10.1142/S0219455415500091
  49. Rezaiee-Pajand, M. and Hashemian, M. (2017), "Modified differential transformation method for solving nonlinear dynamic problems", Appl. Math. Modell., 47, 76-95. https://doi.org/10.1016/j.apm.2017.03.003
  50. Rezaiee-Pajand, M. and Karimi-Rad, M. (2015), "More accurate and stable time integration scheme", Eng. Comput., 31(4), 791-812. https://doi.org/10.1007/s00366-014-0390-x
  51. Rezaiee-Pajand, M. and Karimi-Rad, M. (2016), "A new explicit time integration scheme for nonlinear dynamic analysis", Int. J. Struct. Stab. Dyn., 16(9), 1550054. https://doi.org/10.1142/S0219455415500546
  52. Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "A family of second-order fully explicit time integration schemes", Comput. Appl. Math.
  53. Rezaiee-Pajand, M. and Karimi-Rad, M. (2017), "An accurate predictor-corrector time integration method for structural dynamics", Int. J. Steel Struct., 17(3), 1033-1047. https://doi.org/10.1007/s13296-017-9014-9
  54. Rezaiee-Pajand, M. and Sarafrazi, S.R. (2010), "A mixed and multi-step higher-order implicit time integration family", J. Mech. Eng. Sci., 224(10), 2097-2108. https://doi.org/10.1243/09544062JMES2093
  55. Rezaiee-Pajand, M., Hashemian, M. and Bohluly, A. (2017), "A novel time integration formulation for nonlinear dynamic analysis", Aerosp. Sci. Technol., 69, 625-635. https://doi.org/10.1016/j.ast.2017.07.032
  56. Rio, G., Soive, A. and Grolleau, V. (2005), "Comparative study of numerical explicit time integration algorithms", Adv. Eng. Softw., 36(4), 252-265. https://doi.org/10.1016/j.advengsoft.2004.10.011
  57. Saka, M.P. (1990), "Optimum design of pin-jointed steel structures with practical applications", J. Struct. Eng., 116(10), 2599-2620. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:10(2599)
  58. Shishvan, S.S., Noorzad, A. and Ansari, A. (2009), "A time integration algorithm for linear transient analysis based on the reproducing kernel method", Comput. Meth. Appl. Mech. Eng., 198(41), 3361-3377. https://doi.org/10.1016/j.cma.2009.06.011
  59. Subbaraj, K. and Dokainish, M.A. (1989), "A survey of direct time-integration methods in computational structural dynamics-II. Implicit methods", Comput. Struct., 32(6), 1387-1401. https://doi.org/10.1016/0045-7949(89)90315-5
  60. Tang, Y. and Lou, M. (2017), " New unconditionally stable explicit integration algorithm for real-time hybrid testing", J. Eng. Mech., 143(7), 04017029. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001235
  61. Torkamani, M.A. and Shieh, J.H. (2011), "Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures", Eng. Struct., 33(12), 3516-3526. https://doi.org/10.1016/j.engstruct.2011.07.015
  62. Turyn, L. (2013), Advanced Engineering Mathematics, CRC Press.
  63. Verma, M., Rajasankar, J. and Iyer, N.R. (2015), "Numerical assessment of step-by-step integration methods in the paradigm of real-time hybrid testing", Earthq. Struct., 8(6), 1325-1348. https://doi.org/10.12989/eas.2015.8.6.1325
  64. Wang, M. and Au, F.T.K. (2008), "Precise integration methods based on the Chebyshev polynomial of the first kind", Earthq. Eng. Eng. Vibr., 7(2), 207-216. https://doi.org/10.1007/s11803-008-0837-4
  65. Wang, M.F. and Au, F.T.K. (2009), "On the precise integration methods based on Pade approximations", Comput. Struct., 87(5), 380-390. https://doi.org/10.1016/j.compstruc.2008.11.004
  66. Wen, W.B., Jian, K.L. and Luo, S.M. (2014), "An explicit time integration method for structural dynamics using septuple Bspline functions", Int. J. Numer. Meth. Eng., 97(9), 629-657. https://doi.org/10.1002/nme.4599
  67. Wen, W.B., Wei, K., Lei, H.S., Duan, S.Y. and Fang, D.N. (2017), "A novel sub-step composite implicit time integration scheme for structural dynamics", Comput. Struct., 182, 176-186. https://doi.org/10.1016/j.compstruc.2016.11.018
  68. Wu, B., Xu, G., Wang, Q. and Williams, M.S. (2006), "Operatorsplitting method for real-time substructure testing", Earthq. Eng. Struct. Dyn., 35(3), 293-314. https://doi.org/10.1002/eqe.519
  69. Yin, S.H. (2013), "A new explicit time integration method for structural dynamics", Int. J. Struct. Stab. Dyn., 13(3), 1250068. https://doi.org/10.1142/S021945541250068X
  70. Zhai, W.M. (1996), "Two simple fast integration methods for large-scale dynamic problems in engineering", Int. J. Numer. Meth. Eng., 39(24), 4199-4214. https://doi.org/10.1002/(SICI)1097-0207(19961230)39:24<4199::AID-NME39>3.0.CO;2-Y
  71. Zheng, M., Yuan, Z., Tong, Q., Zhang, G. and Zhu, W. (2017), "A novel unconditionally stable explicit integration method for finite element method", Vis. Comput., 1-13.

Cited by

  1. Survey of cubic B-spline implicit time integration method in computational wave propagation vol.79, pp.4, 2018, https://doi.org/10.12989/sem.2021.79.4.473