DOI QR코드

DOI QR Code

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani (Department of Mechanical Engineering, National Institute of Technology Rourkela) ;
  • Panda, Subrata K. (Department of Mechanical Engineering, National Institute of Technology Rourkela)
  • Received : 2018.06.08
  • Accepted : 2018.06.25
  • Published : 2018.09.25

Abstract

This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

Keywords

References

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25, 693-704.
  2. Arani, A.G. and Kolahchi, R. (2014), "Nonlinear vibration and instability of embedded double-walled carbon nanocones based on nonlocal timoshenko beam theory", J. Mech. Eng. Sci., 228, 690-702. https://doi.org/10.1177/0954406213490128
  3. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65, 453-464.
  4. Belabed, Z., Bousahla, A.A., Houari, M.S.A. Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14, 103-115.
  5. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18, 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  6. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25, 257-270.
  7. Bellifa, H., Benrahou, K.H., Bousahla, A.A. Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62, 695-702.
  8. Bellifa, H., Halim, K., Hadji, B.L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38, 265-275. https://doi.org/10.1007/s40430-015-0354-0
  9. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65, 19-31.
  10. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23, 423-431. https://doi.org/10.1080/15376494.2014.984088
  11. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3, 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  12. Biglari, H. and Jafari, A.A. (2010) "High-order free vibrations of doubly-curved sandwich panels with flexible core based on a refined three-layered theory", Compos. Struct., 92, 2685-2694. https://doi.org/10.1016/j.compstruct.2010.03.017
  13. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced Polymer (NFRP)", Comput. Concrete, 18, 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  14. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14, 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  15. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
  16. Chen, X.L. and Liu, Y.J. (2004), "Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites", Comput. Mater. Sci., 29, 1-11. https://doi.org/10.1016/S0927-0256(03)00090-9
  17. Cividanes, L.S., Simonetti, E.A.N., Moraes, M.B., Fernandes, F.W. and Thim, G.P. (2014), "Influence of carbon nanotubes on epoxy resin cure reaction using different techniques: A comprehensive review", Polym. Eng. Sci., 54, 2461-2469. https://doi.org/10.1002/pen.23775
  18. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2009), Concepts and Applications of Finite Element Analysis, 4th Edition, John Wiley & Sons Pvt. Ltd., Singapore.
  19. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  20. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63, 585-595.
  21. Esteva, M. and Spansos, P.D. (2009), "Effective elastic properties of nanotube reinforced composites with slightly weakened interfaces", J. Mech. Mater. Struct., 4, 887-900. https://doi.org/10.2140/jomms.2009.4.887
  22. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27, 109-122.
  23. Hadji, L., Atmane, H.A., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2011), "Free vibration of functionally graded sandwich plates using four-variable refined plate theory", Appl. Math. Mech., 32, 925-942. https://doi.org/10.1007/s10483-011-1470-9
  24. Hamidi, A., Houari, M.S.A., Mahmoud, S.R.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18, 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  25. Henderson, J.P., Plummer, A. and Johnston, N. (2018), "An electro-hydrostatic actuator for hybrid active-passive vibration isolation", Int. J. Hydromechatron., 1, 47-71. https://doi.org/10.1504/IJHM.2018.090305
  26. Heydari, M.M., Hafizi Bidgoli, A., Golshani, H.R., Beygipoor, G. and Davoodi, A. (2015), "Nonlinear bending analysis of functionally graded CNT-reinforced composite mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM", Nonlin. Dyn., 79, 1425-1441. https://doi.org/10.1007/s11071-014-1751-0
  27. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354, 56-58. https://doi.org/10.1038/354056a0
  28. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory", Struct. Eng. Mech., 65, 621-631.
  29. Kaci, A., Tounsi, A., Bakhti, K. and Adda Bedia, E.A. (2012), "Nonlinear cylindrical bending of functionally graded carbon nanotube-reinforced composite plates", Steel Compos. Struct., 12, 491-504. https://doi.org/10.12989/scs.2012.12.6.491
  30. Kar, V.R. and Panda, S.K. (2014), "Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method", J. Vibr. Contr., 22, 1935-1949.
  31. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  32. Karami, B., Janghorban, M. and Tounsi, A. (2018a), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  33. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64, 391-402.
  34. Kiani, Y. (2016), "Thermal postbuckling of temperature-dependent sandwich beams with carbon nanotube-reinforced face sheets", J. Therm. Stress., 39, 1098-1110. https://doi.org/10.1080/01495739.2016.1192856
  35. Kiani, Y. and Eslami, M.R. (2012), "Thermal buckling and postbuckling response of imperfect temperature-dependent sandwich fgm plates resting on elastic foundation", Arch. Appl. Mech., 82, 891-905. https://doi.org/10.1007/s00419-011-0599-8
  36. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017a), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., DOI: 10.1177/1099636217731071.
  37. Kolahchi, R., Safari, M. and Esmailpour, M. (2014), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265.
  38. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  39. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Large deflection analysis of functionally graded carbon nanotube-reinforced composite plates by the element-free kp-ritz method", Comput. Meth. Appl. Mech. Eng., 256, 189-199. https://doi.org/10.1016/j.cma.2012.12.007
  40. Lei, Z.X., Zhang, L.W., Liew, K.M. and Yu, J.L. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
  41. Li, C. and Chou, T.W. (2004), "Elastic properties of single-walled carbon nanotubes in transverse directions", Phys. Rev. B, 69, 2003-2005.
  42. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22, 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  43. Madhukar, S. and Singha, M.K. (2013), "Geometrically nonlinear finite element analysis of sandwich plates using normal deformation theory", Compos. Struct., 97, 84-90. https://doi.org/10.1016/j.compstruct.2012.10.034
  44. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Modell., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  45. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038
  46. Mehar, K. and Panda, S.K. (2016b), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30, 1-12.
  47. Mehar, K. and Panda, S.K. (2016c), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", Mater. Sci. Eng., 115, 012014.
  48. Mehar, K. and Panda, S.K. (2017), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., DOI: 10.1002/pc.24266.
  49. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  50. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16, 293-318. https://doi.org/10.1177/1099636214526852
  51. Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccan., 51, 2185-2201. https://doi.org/10.1007/s11012-015-0348-0
  52. Moradi-Dastjerdi, R., Payganeh, G., Malek-Mohammadi, H., Dastjerdi, R.M., Payganeh, G. and Mohammadi, H.M. (2015), "Free vibration analyses of functionally graded CNT reinforced nanocomposite sandwich plates resting on elastic foundation", J. Sol. Mech., 7, 158-172.
  53. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite face sheets", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
  54. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Boca Raton, London, New York, Washington, D.C.
  55. Sankar, A., Natarajan, S., Haboussi, M., Ramajeyathilagam, K. and Ganapathi, M. (2014), "Panel flutter characteristics of sandwich plates with CNT reinforced facesheets using an accurate higher-order theory", J. Flu. Struct., 50, 376-391. https://doi.org/10.1016/j.jfluidstructs.2014.06.028
  56. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  57. Shen, H.S. and Xiang, Y. (2013), "Nonlinear analysis of nanotubereinforced composite beams resting on elastic foundations in thermal environments", Eng. Struct., 56, 698-708. https://doi.org/10.1016/j.engstruct.2013.06.002
  58. Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291. https://doi.org/10.1016/j.compstruct.2014.01.010
  59. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  60. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C. and Gao, H. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites", J. Eng. Mater. Technol., 126, 250-257. https://doi.org/10.1115/1.1751182
  61. Szekrenyes, A. (2014), "Stress and fracture analysis in delaminated orthotropic composite plates using third-order shear deformation theory", Appl. Math. Modell., 38, 3897-3916. https://doi.org/10.1016/j.apm.2013.11.064
  62. Topal, U. and Uzman, U. (2009), "Frequency optimization of laminated folded composite plates", Mater. Des., 30, 494-501. https://doi.org/10.1016/j.matdes.2008.05.066
  63. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  64. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  65. Wang, Z., Xie, Z. and Huang, W. (2018), "A pin-moment model of flexoelectric actuators", Int. J. Hydromechatron., 1, 72-90. https://doi.org/10.1504/IJHM.2018.090306
  66. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlin. Dyn., 70, 735-754. https://doi.org/10.1007/s11071-012-0491-2
  67. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets", Compos. Part B: Eng., 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  68. Yas, M.H. and Heshmati, M. (2012), "Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load", Appl. Math. Modell., 36, 1371-1394. https://doi.org/10.1016/j.apm.2011.08.037
  69. Yazid, M., Heireche, H., Tounsi, A. Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability responsze of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21, 15-25.
  70. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21, 65-74.
  71. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14, 519-532.
  72. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54, 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  73. Zenkour, A.M. (2005), "A comprehensive analysis of functionally graded sandwich plates: Part 1-deflection and stresses", Int. J. Sol. Struct., 42, 5224-5242. https://doi.org/10.1016/j.ijsolstr.2005.02.015
  74. Zhang, C.L. and Shen, H.S. (2006), "Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation", Appl. Phys. Lett., 89, 081904. https://doi.org/10.1063/1.2336622
  75. Zhang, L.W. (2017), "Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates with internal columnsupports", J. Model. Mech. Mater., 1, 20160154.
  76. Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotubereinforced functionally graded cylindrical panels", Comput. Meth. Appl. Mech. Eng., 273, 1-18. https://doi.org/10.1016/j.cma.2014.01.024
  77. Zhang, Y.Y., Wang, C.M., Tan, V.B.C., Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2008), "Examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled carbon nanotubes via molecular dynamics simulations examining the effects of wall numbers on buckling behavior and mechanical properties of multiwalled car", J. Appl. Phys. 103(5), 053505. https://doi.org/10.1063/1.2890146
  78. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010
  79. Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Bag, O. (2014), "Bending analysis of FGM plates under hygrothermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  80. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), "A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells", Steel Compos. Struct., 26, 125-137.

Cited by

  1. Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
  2. Nonlinear Vibrations of Laminated Cross-Ply Composite Cantilever Plate in Subsonic Air Flow vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/4601672
  3. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439
  4. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2018, https://doi.org/10.12989/mwt.2020.11.6.399
  5. Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control vol.10, pp.6, 2018, https://doi.org/10.12989/acc.2020.10.6.499
  6. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.117
  7. Damped harmonic vibrations of axisymmetric graphene‐enhanced cylinders in thermal environment vol.42, pp.11, 2018, https://doi.org/10.1002/pc.26258