DOI QR코드

DOI QR Code

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H. (Department of Civil Engineering, K.N.Toosi University of Technology) ;
  • Hariri-Ardebili, M.A. (Department of Civil Engineering, University of Colorado) ;
  • Mirtaheri, M. (Department of Civil Engineering, K.N.Toosi University of Technology) ;
  • Zandi, A.P. (Department of Civil Engineering, K.N.Toosi University of Technology)
  • Received : 2018.02.28
  • Accepted : 2018.08.17
  • Published : 2018.09.25

Abstract

Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

Keywords

References

  1. Aboul-Nasr, G. and Mourad, S.A. (2015), "An extended force density method for form finding of constrained cable nets", Case Stud. Struct. Eng., 3, 19-32. https://doi.org/10.1016/j.csse.2015.02.001
  2. Adriaenssens, S., Block, P., Veenendaal, D. and Williams, C. (2014), Shell Structures for Architecture: Form Finding and Optimization, Routledge, London, U.K.
  3. Aish, F., Joyce, S., Malek, S. and Williams, C.J. (2015), "The use of a particle method for the modelling of isotropic membrane stress for the form finding of shell structures", Comput.-Aid. Des., 61, 24-31. https://doi.org/10.1016/j.cad.2014.01.014
  4. Alic, V. and Persson, K. (2016), "Form finding with dynamic relaxation and isogeometric membrane elements", Comput. Meth. Appl. Mech. Eng., 300, 734-747. https://doi.org/10.1016/j.cma.2015.12.009
  5. Borgart, A. (2010), "An approximate calculation method for air inflated cushion structures for design purposes", Int. J. Space Struct., 25(2), 83-91. https://doi.org/10.1260/0266-3511.25.2.83
  6. Bridgens, B. and Birchall, M. (2012), "Form and function: The significance of material properties in the design of tensile fabric structures", Eng. Struct., 44, 1-12. https://doi.org/10.1016/j.engstruct.2012.05.044
  7. Forster, B. and Chilton, J. (2004), Introduction [European Design Guide for Tensile Surface Structures], In: European Design Guide for Tensile Surface Structures, Tensinet, Brussels, Belgium.
  8. Fund, A.I. (2008), Form-Finding Structures, M.Sc. Dissertation, Massachusetts Institute of Technology, Cambridge.
  9. Grundig, L., Moncrieff, E., Singer, P. and Strobel, D. (2000), "A history of the principal developments and applications of the force density method in Germany 1970-1999", Proceedings of the 4th International Coll. Computation of Shell & Spatial Structures, Chania-Crete, Greece, June.
  10. Haber, R. and Abel, J. (1982a), "Initial equilibrium solution methods for cable reinforced membranes part i-formulations", Comput. Meth. Appl. Mech. Eng., 30(3), 263-284. https://doi.org/10.1016/0045-7825(82)90080-9
  11. Haber, R. and Abel, J. (1982b), "Initial equilibrium solution methods for cable reinforced membranes part iiimplementation", Comput. Meth. Appl. Mech. Eng., 30(3), 285-306. https://doi.org/10.1016/0045-7825(82)90081-0
  12. Harichandran, A. and Sreevalli, I.Y. (2016), "Form-finding of tensegrity structures based on force density method", Ind. J. Sci. Technol., 9(24), 1-6.
  13. Huttner, M., Fajman, P. and Maca, J. (2017), "Membrane structures-aspects of form-finding process", Adv. Mater. Res., 1144, 28-33. https://doi.org/10.4028/www.scientific.net/AMR.1144.28
  14. Ibrahim, M.W., Hadi, M.A. and Min, Y.H. (2018), "Form-finding using nonlinear analysis method in tensioned fabric structure in the form of handkerchief surface", J. Phys.: Conf. Ser., 995, 012014. https://doi.org/10.1088/1742-6596/995/1/012014
  15. Koohestani, K. (2013), "A computational framework for the formfinding and design of tensegrity structures", Mech. Res. Commun., 54, 41-49. https://doi.org/10.1016/j.mechrescom.2013.09.010
  16. Koohestani, K. (2014), "Nonlinear force density method for the form-finding of minimal surface membrane structures", Commun. Nonlin. Sci. Numer. Simulat., 19(6), 2071-2087. https://doi.org/10.1016/j.cnsns.2013.10.023
  17. Koohestani, K. (2017), "On the analytical form-finding of tensegrities", Compos. Struct., 166, 114-119. https://doi.org/10.1016/j.compstruct.2017.01.059
  18. Lahuerta, J.J. (2003), Antoni Gaudi, Phaidon Incorporated Limited.
  19. Lan, C., Tu, X., Xue, J., Briseghella, B. and Zordan, T. (2018), "Adaptive form-finding method for form-fixed spatial network structures", Int. J. Adv. Struct. Eng., 1-11.
  20. Lee, K. and Han, S. (2011), "Advanced shape finding algorithm of force density method based on fem", Adv. Steel Constr., 7(4), 313-329.
  21. Li, T., Deng, H., Tang, Y., Jiang, J. and Ma, X. (2017), "Accuracy analysis and form-finding design of uncertain mesh reflectors based on interval force density method", J. Aerosp. Eng., 231(11), 2163-2173.
  22. Linkwitz, K. (1999), "About formfinding of double-curved structures", Eng. Struct., 21(8), 709-718. https://doi.org/10.1016/S0141-0296(98)00025-X
  23. Linkwitz, K. and Schek, H.J. (1971), "Einige bemerkungen zur berechnung von vorgespannten seilnetzkon-struktionen", Arch. Appl. Mech., 40(3), 145-158.
  24. Malerba, P., Patelli, M. and Quagliaroli, M. (2012), "An extended force density method for the form finding of cable systems with new forms", Struct. Eng. Mech., 42(2), 191-210. https://doi.org/10.12989/sem.2012.42.2.191
  25. MATLAB (2016), Version 9.1 (R2016b), The MathWorks Inc., Natick, Massachusetts, U.S.A.
  26. Maurin, B. and Motro, R. (1998), "The surface stress density method as a form-finding tool for tensile membranes", Eng. Struct., 20(8), 712-719. https://doi.org/10.1016/S0141-0296(97)00108-9
  27. Miki, M. and Kawaguchi, K. (2010), "Extended force density method for form-finding of tension structures", J. Int. Assoc. Shell Spat. Struct., 51(4), 291-303.
  28. Ohsaki, M. and Hayashi, K. (2017), "Force density method for simultaneous optimization of geometry and topology of trusses", Struct. Multidiscipl. Optim., 56(5), 1157-1168. https://doi.org/10.1007/s00158-017-1710-8
  29. Pauletti, R.M. and Pimenta, P.M. (2008), "The natural force density method for the shape finding of taut structures", Comput. Meth. Appl. Mech. Eng., 197(49-50), 4419-4428. https://doi.org/10.1016/j.cma.2008.05.017
  30. Plateau, J.A.F. (1873), Statique Experimentale et Theorique des Liquides Soumis aux Seules Forces Moleculaires, Gauthier-Villars, 2.
  31. Popov, E.V., Lagunova, M.V. and Rotkov, S.I. (2018), "Tensile structure form-finding on the basis of properties of frame-grid template", Proceedings of the International Conference on Geometry and Graphics, Milan, August.
  32. Schek, H.J. (1974), "The force density method for form finding and computation of general networks", Comput. Meth. Appl. Mech. Eng., 3(1), 115-134. https://doi.org/10.1016/0045-7825(74)90045-0
  33. Shi, J.X., Wu, Z., Tsukimoto, S. and Shimoda, M. (2018), "Design optimization of cable-membrane structures for form-finding and stiffness maximization", Compos. Struct., 192, 528-536. https://doi.org/10.1016/j.compstruct.2018.03.033
  34. Shimoda, M. and Yamane, K. (2015), "A numerical form-finding method for the minimal surface of membrane structures", Struct. Multidiscipl. Optim., 51(2), 333-345. https://doi.org/10.1007/s00158-014-1127-6
  35. Singer, P. (1995), Die Berechnung von Minimalflachen, Seifenblasen, Membrane und Pneus aus Geodatischer Sicht, Bayerischen Akademie der Wissenschaften.
  36. Tang, Y. and Li, T. (2017), "Equivalent-force density method as a shape-finding tool for cable-membrane structures", Eng. Struct., 151, 11-19. https://doi.org/10.1016/j.engstruct.2017.08.010
  37. Tang, Y., Li, T., Ma, X. and Hao, L. (2016), "Extended nonlinear force density method for form-finding of cable-membrane structures", J. Aerosp. Eng., 30(3), 04016101.
  38. Tibert, A. and Pellegrino, S. (2011), "Review of form-finding methods for tensegrity structures", Int. J. Space Struct., 26(3), 241-255. https://doi.org/10.1260/0266-3511.26.3.241
  39. Veenendaal, D. and Block, P. (2012), "An overview and comparison of structural form finding methods for general networks", Int. J. Sol. Struct., 49(26), 3741-3753. https://doi.org/10.1016/j.ijsolstr.2012.08.008
  40. Xiang, X.A., Tian, W., Zhao, Y. and Dong, S.L. (2010), "Improved nonlinear force density method accounting for 2-dimensional deformations of membrane element", Eng. Mech., 4, 43.
  41. Xu, G., Rabczuk, T., Guler, E., Wu, Q., Hui, K.C. and Wang, G. (2015a), "Quasi-harmonic bezier approximation of minimal surfaces for finding forms of structural membranes", Comput. Struct., 161, 55-63. https://doi.org/10.1016/j.compstruc.2015.09.002
  42. Xu, R., Li, D., Liu, W., Jiang, J., Liao, Y. and Wang, J. (2015b), Modified nonlinear force density method for form-finding of membrane sar antenna", Struct. Eng. Mech., 54(6), 1045-1059. https://doi.org/10.12989/sem.2015.54.6.1045
  43. Ye, J., Feng, R.Q., Zhou, S. and Tian, J. (2012), "The modified force-density method for form-finding of membrane structures", Int. J. Steel Struct., 12(3), 299-310. https://doi.org/10.1007/s13296-012-3001-y
  44. Zhang, L. (2010), "Reliability analysis of fabric structures", Ph.D. Dissertation, Newcastle University, Newcastle, U.K.

Cited by

  1. Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method vol.8, pp.12, 2018, https://doi.org/10.3390/app8122553
  2. Fluid-structure interaction of a tensile fabric structure subjected to different wind speeds vol.31, pp.6, 2018, https://doi.org/10.12989/was.2020.31.6.533
  3. Response of a Double Hypar Fabric Structure Under Varying Wind Speed Using Fluid-Structure Interaction vol.18, pp.4, 2021, https://doi.org/10.1590/1679-78256367
  4. Hailstone-induced dynamic responses of pretensioned umbrella membrane structure vol.24, pp.1, 2018, https://doi.org/10.1177/1369433220940149