References
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Arani, A.G., Haghparast, E. and Zarei, H.B. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Compos. Struct., 23(5), 529-541. https://doi.org/10.12989/scs.2017.23.5.529
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos. Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
- Benbakhti, A., Bouiadjra, M.B., Retiel, N. and Tounsi, A. (2016), "A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates", Steel Compos. Struct., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975
- Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123
- Deng, H.Q., Li, T.J., Xue, B.J. and Wang, Z.W. (2015), "Analysis of thermally induced vibration of cable-beam structures", Struct. Eng. Mech., 53(3), 443-453. https://doi.org/10.12989/sem.2015.53.3.443
- Farahani, H. and Barati, F. (2015), "Vibration of sumberged functionally graded cylindrical shell based on first order shear deformation theory using wave propagation method", Struct. Eng. Mech., 53(3), 575-587. https://doi.org/10.12989/sem.2015.53.3.575
- Gao, Y., Yu, L.Y., Yang, L.Z. and Zhang, L.L. (2015), "The refined theory of 2D quasicrystal deep beams based on elasticity of quasicrystals", Struct. Eng. Mech., 53(3), 411-427. https://doi.org/10.12989/sem.2015.53.3.411
- Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149. https://doi.org/10.12989/sem.2017.62.2.143
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011b), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed-form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007
- Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011a), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda, B. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305
- Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higherorder finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, Florida, U.S.A.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
- Tahouneh, V. (2014), "Free vibration analysis of bidirectional functionally graded annular plates resting on elastic foundations using differential quadrature method", Struct. Eng. Mech., 52(4), 663-686. https://doi.org/10.12989/sem.2014.52.4.663
- Tai, H.T. and Choi, D.H. (2014), "Levy solution for free vibration analysis of functionally graded plates based on a refined plate theory, KSCE J. Civ. Eng., 18(6),1813-1824. https://doi.org/10.1007/s12205-014-0409-2
- Tai, H.T. and Kim, S.E. (2011), "Levy-type solution for buckling analysis of orthotropic plates based on two variable refined plate theory", Compos. Struct., 93(7), 1738-1746. https://doi.org/10.1016/j.compstruct.2011.01.012
- Tai, H.T. and Kim, S.E. (2012), "Levy-type solution for free vibration analysis of orthotropic plates based on two variable refined plate theory", Appl. Math. Modell., 36(8), 3870-3882. https://doi.org/10.1016/j.apm.2011.11.003
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
Cited by
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2018, https://doi.org/10.12989/gae.2021.24.1.091