DOI QR코드

DOI QR Code

Estimation of Nutrient Mass Balance in a Phragmites Australis Community in Jinudo Through a Mesocosm Experiment

메조코즘 실험을 통한 진우도 갈대군락의 영양염 물질수지 산정

  • RYU, Sung Hoon (Department of Ocean Engineering, Pukyong National University) ;
  • LEE, In cheol (Department of Ocean Engineering, Pukyong National University)
  • Received : 2018.07.02
  • Accepted : 2018.08.28
  • Published : 2018.08.31

Abstract

In this study, we performed a mesocosm experiment to estimate the mass balance of Nutrients (DIN, DIP) in a phragmites australis community. We developed 4 mesocosm tanks which is available to circulate seawater with adjustable tide levels and flooding times. Each of the mesocosm tanks were filled with phragmites australis and sediment from Jinudo in Nakdong Estuary. We investigated DIN, DIP concentrations in three layers (seawater-phragmites australis-sediment) to estimate the mass balance of Nutrients and biomass. Growth rates were also investigated. The results can be summarized as follows. 1) In spring, rhizome biomass was higher than that of aerial stem by about 6.3~9.7%. In summer, aerial stem biomass was higher than that of rhizome about 19.2~21.2 %. 2) Th Growth rate of phragmites in Mesocosm Tank A was faster than in Mesocosm Tank D by about 2 to 3 times for aerial stem and rhizome. 3) The Concentration of nutrients (DIN, DIP) in each mesocosm Tank showed 2~3 % variance in spring and summer. 4) The biomass in each mesocosm varied by about 23 % which was higher than the concentration variance for each mesocosm tanks.

본 연구에서는 갈대군락의 영양염 물질수지 모델 구축을 위한 기초연구로서, 갈대군락 Mesocosm 실험을 통해 수층-갈대(뿌리, 잎, 줄기)-토양의 영양염(DIN, DIP) 농도의 춘계 및 하계 모니터링 결과를 이용하여 물질수지를 산정하였으며, 결과는 다음과 같다. 1) 갈대의 생체량은 춘계에는 지하경이 지상경에 비해 약 6.3~9.7 % 높으며, 하계에는 지상경이 지하경에 비해 약 19.2~21.2 % 높게 나타났으며, 갈대의 성장속도는 Mesocosm Tank A가 Mesocosm Tank D에 비해 지상경과 지하경 모두 2~3배 정도 빠르게 나타났다. 2) Mesocosm Tank에서의 갈대의 영양염(DIN, DIP) 농도는 춘계와 하계 모두 각각 2~3 %로 차이가 적었다. 3) Mesocosm Tank별 생체량의 차이는 최대 23 %로 나타나지만, 갈대가 흡수하는 영양염의 농도는 최대 3 % 정도로 차이가 적었다.

Keywords

References

  1. Barbanti, A., V. U. Ceccherelli, F. Frascari, G. Reggiani and G. Rosso(1992), Nutrient regeneration processes in bottom sediments in a Po delta lagoon (Italy) and the role of bioturbation in determining the fluxes at the sediment-water interface, Hydrobiologia, Vol. 228, No. 1, pp. 1-21. https://doi.org/10.1007/BF00006471
  2. Duarte, C. M., I. J. Losada, I. E. Hendriks, I. Mazarrasa and N. Marba(2013), The role of coastal plant communities for climate change mitigation and adaptation, Nat. Clim. Change, Vol. 3, pp. 961-968. https://doi.org/10.1038/nclimate1970
  3. Findlay, S., P. Groffman and S. Dye(2003), Effects of phragmites australis removal on marsh nutrient cycling, Wetland ecology and management, Vol. 11, No. 3, pp. 157-165. https://doi.org/10.1023/A:1024255827418
  4. Gedan, K. B., M. L. Kirwan, E. Wolanski, E. B. Barbier and B. R. Silliman(2011), The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm, Clim. Change, Vol. 106, pp. 7-29. https://doi.org/10.1007/s10584-010-0003-7
  5. Hellings, S. E. and J. L. Gllagher(1992), The effects of salinity and flooding on Phragmites australis, Journal of Applied Ecology, Vol. 29, No. 1, pp. 41-49. https://doi.org/10.2307/2404345
  6. Lansard, B., C. Rabouille and D. Massias(2003), Variability in benthic oxygen fluxes during the winter-spring transition in coastal sediments: an estimation by in situ micro-electrodes and laborotory mini-electrodes, Oceanol. Acta, Vol. 26, No. 3, pp. 269-279. https://doi.org/10.1016/S0399-1784(03)00013-6
  7. Lee, C. Y. and Y. H. Kim(1976), Studies on the indoles in the common reed -II. Changes of indole compounds during the growth of sprouts-, J. Kor. Agri. Chem. Soc, Vol. 19, No. 2, pp. 65-69.
  8. Lee, H. J. and H. S. Yang(1993), Adaptation of Phragmites communis Trin. population to soil salt contents of habitats, Korean J. Ecol, Vol. 16, No. 1, pp. 63-74.
  9. Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat and S. Findlay(2000), A comparison of Phragmites australis in freshwater and brackish marsh environments in North America, Wetlands Ecology and Management, Vol. 8, No. 2-3, pp. 89-103. https://doi.org/10.1023/A:1008432200133
  10. Min, B. M.(2011), Sediment properties and growth of Phragmites australis in mud tidal flat, Journal of Korean Environmental Restoration Technology, Vol. 14, No. 3, pp. 57-69.
  11. Min, B. M. and J. H. Kim(1999), Plant distribution in relation to soil properties of reclaimed lands on the west cost of Korea, J. Plant Biol, Vol. 42, No. 4, pp. 279-286. https://doi.org/10.1007/BF03030341
  12. Ministry of Environment(2008), WETLAND CONSERVATION ACT, Article 2.
  13. Moller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B. K. van Wesenbeeck, G. Wolters, K. Jensen, T. J. Bouma, M. Miranda-Lange and S. Schimmels(2014), Wave attenuation over coastal salt marshes under storm surge conditions, Nat. Geosci, Vol. 7, pp. 727-731. https://doi.org/10.1038/ngeo2251
  14. Park, T. Y.(1999), A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands, J. Korean Env. Res. & Reveg. Tech, Vol. 2, No. 3, pp. 64-73.
  15. Philson, M. E. Q. and S. W. Nixon(1980), Marine microcosms in Ecological Research. 1980. Reprinted from microcosms in ecological research. Edited by John P. Grey, Jr. Published by U.S. technical information center, U.S. Department of energy, Symposium series 52(CONF-781101), pp. 724-741.
  16. Rupprecht, F., I. Moller, B. Evans, T. Spencer and K. Jensen(2015), Biophysical properties of salt marsh canopies-Quantifying plant stem flexibility and above ground biomass, Coastal Engineering, Vol. 100, pp. 48-57. https://doi.org/10.1016/j.coastaleng.2015.03.009
  17. Ruth, B. F., D. A. Flemer and C. M. Bundrick(1994), Recolonization of estuarine sediments by macroinvertbrates: Does microcosm size matter? Estuaries, 17(3), pp. 606-613. https://doi.org/10.2307/1352408
  18. Ryu, T. Y.(2014), A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands, J. Korean Env. Res. & Reveg. Tech., 2(3), pp. 64-73.
  19. Ryu, T. Y.(2016), A study on the management planning for the conservation and environmentally friendly use of Korean coastal wetlands, J. Korean Env. Res. & Reveg. Tech., 2(3), pp. 64-73.
  20. Shin, B. S. and K. H. Kim(2007), Estimation of ability for water quality purification using ecological modeling on tidal flat, The Korean Society of Ocean Engineers, Vol. 21, No. 2, pp. 42-49.
  21. Schmieder, K., M. Dienst, W. Ostendrop and K. D. Johnk(2004), Effects of water level variations on the dynamics of the reed belts of Lake Constance, Ecohydrol Hydrobiol, 4, pp. 469-480.
  22. U.S. Environmental Protection Agency(1988), Design manual: constructed wetlands and aquatic plant systems for municipal wastewater treatment, EPA/625/1-88/022, pp. 1-83.
  23. Vretare, V., S. E. B. Weisner, J. A. Strand and W. Graneli(2001), Phenotypic plasticity in Phragmites australis as a functional response to water depth, Aquatic Botany, Vol. 69, No. 2-4, pp. 127-145. https://doi.org/10.1016/S0304-3770(01)00134-6
  24. White, S. D., B. M. Deegan and G. G. Ganf(2007), The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis, Aquatic Botany, Vol. 86, No. 4, pp. 369-376. https://doi.org/10.1016/j.aquabot.2007.01.006
  25. Windham, L.(2001), Comparison of biomass production and decomposition between Phragmites australis (common reed) and Spartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA, Wetlands, Vol. 21, No. 2, pp. 179-188. https://doi.org/10.1672/0277-5212(2001)021[0179:COBPAD]2.0.CO;2

Cited by

  1. 육상 기반 해양 폐쇄형 인공생태계를 활용한 해양생태계 위해성 평가: 객관적인 영향 평가 tool 제시 vol.39, pp.1, 2018, https://doi.org/10.11626/kjeb.2021.39.1.088