References
- Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
- Ahmed, S. & Parsons, D. (2013). Abductive science inquiry using mobile devices in the classroom. Computers & Education, 63, 62-72. https://doi.org/10.1016/j.compedu.2012.11.017
- Ardito, C., Costabile, M. F., De Marsico, M., Lanzilotti, R., Levialdi, S., Roselli, T., & Rossano, V. (2006). An approach to usability evaluation of e-learning applications. Universal Access in the Information Society, 4(3), 270-283. https://doi.org/10.1007/s10209-005-0008-6
- Balamuralithara, B. & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108-118. https://doi.org/10.1002/cae.20186
- Blake, C. & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: features of effective use. Journal of Computer Assisted Learning, 23(6), 491-502. https://doi.org/10.1111/j.1365-2729.2007.00239.x
- Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98(5), 905-935. https://doi.org/10.1002/sce.21126
- Chiu, T. K. & Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers & Education, 82, 280-291. https://doi.org/10.1016/j.compedu.2014.12.001
- Cho, H., Kang, D., Kang, T., Kim, M., Kim, Y., Kim, H., Moon, T., Lee, Y., Lee, J., & Cho, Y. (2011). High school science textbook. Seoul: Chunjae Education.
- Cober, R., Tan, E., Slotta, J., So, H. J., & Konings, K. D. (2015). Teachers as participatory designers: Two case studies with technology-enhanced learning environments. Instructional Science, 43(2), 203-228. https://doi.org/10.1007/s11251-014-9339-0
- Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385. https://doi.org/10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
- Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169-189. https://doi.org/10.1207/s15326985ep3403_3
- Eryilmaz, E., Chiu, M. M., Thoms, B., Mary, J., & Kim, R. (2014). Design and evaluation of instructor-based and peer-oriented attention guidance functionalities in an open source anchored discussion system. Computers & Education, 71, 303-321. https://doi.org/10.1016/j.compedu.2013.08.009
- Fraser, B. J. (1981). Test of science-related attitudes (TOSRA). Australian Council for Educational Research.
- Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. https://doi.org/10.1002/tea.20442
- Gustafson, K. L. & Branch, R. M. (1997). Revisioning models of instructional development. Educational Technology Research and Development, 45(3), 73-89. https://doi.org/10.1007/BF02299731
- Han, Y. H., Jeun, E. S., & Paik, S. H. (2014). Analysis of scientific inquiry elements in middle school science textbooks, teachers cognition, and an experiment case. Journal of the Korean Association for Science Education, 34(4), 349-357. https://doi.org/10.14697/jkase.2014.34.4.0349
- Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in "educational" apps lessons from the science of learning. Psychological Science in the Public Interest, 16(1), 3-34. https://doi.org/10.1177/1529100615569721
- Hoffler, T. N. & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722-738. https://doi.org/10.1016/j.learninstruc.2007.09.013
- Jin, S. H. (2013). Visual design guidelines for improving learning from dynamic and interactive digital text. Computers & Education, 63, 248-258. https://doi.org/10.1016/j.compedu.2012.12.010
- Johnson, D. & Wiles, J. (2003). Effective affective user interface design in games. Ergonomics, 46(13-14), 1332-1345. https://doi.org/10.1080/00140130310001610865
- Kang, M., Kim, H. S., & Lee, J. (2011). The effects of flow and cognitive presence on learning outcomes in a middle school science class using web-based simulation. Journal of Educational Information and Media, 17(1), 39-61.
- Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550. https://doi.org/10.1007/s11251-009-9093-x
- Kim, K. S., Lee, S. W., & Noh, T. H. (2009). The relationships among elementary school students' cognitive, affective, and behavioral characteristics related to science learning and their perceptions toward scientific and/or technological professions. Journal of Korean Elementary Science Education, 28(2), 121.131.
- Kim, M. H. & Kim, Y. (2012). Preference and actuality for science laboratory and teaching environment of science teachers’ in primary and secondary school. Journal of the Korean Association for Science Education, 32(10), 1567-1579.
- Kim, S. H., Kim, Y. B., Kang, S. J., Kim, H. C., Shin, J. H., Park, S. H., & Min, B. C. (2008). Korean education longitudinal study 2005 (IV). Seoul: Korean Educational Development Institute.
- Kim, Y., Son, J., & Song, Y. (2010). Analysis of the biology major teachers' misconceptions on the pathway of image formation in eye vision. Biology Education, 38(2), 331-341. https://doi.org/10.15717/bioedu.2010.38.2.331
- Kim, Y. Y. & Chung, H. M. (2012). The development of scaffolding guidelines for instructors to promote students’ self-directed learning. Journal of Educational Studies, 43(1), 1-31.
- Klein, J., Moon, Y., & Picard, R. W. (2002). This computer responds to user frustration: Theory, design, and results. Interacting with Computers, 14(2), 119-140. https://doi.org/10.1016/S0953-5438(01)00053-4
- Kort, B., Reilly, R., & Picard, R. W. (2001). An Affective Model of Interplay between Emotions and Learning: Reengineering Educational Pedagogy-Building a Learning Companion. In Proceedings IEEE International Conference on Advanced Learning Technologies (pp. 43-46). Madison, WI. USA.
- Lai, C. H., Yang, J. C., Chen, F. C., Ho, C. W., & Chan, T. W. (2007). Affordances of mobile technologies for experiential learning: the interplay of technology and pedagogical practices. Journal of Computer Assisted Learning, 23(4), 326-337. https://doi.org/10.1111/j.1365-2729.2007.00237.x
- Lee, C. Y. (2015). The effects of smart applications in didactic instructions on inquiry activities : The development and application of smart applications (Unpublished master's thesis). Seoul National University, Seoul.
- Lee, C. Y. & Hong, H. (2017). Development of a science simulation to support authentic observation in precipitation reactions. School Science Journal, 11(2), 236-245.
- Lee, Y. M., Kang, M. H., Yoon, S. H., & Park, J. Y. (2016). Analysis of predicting variables of the 21st century skills in elementary smart-learning using smart-pads. The Journal of Elementary Education, 29(4), 201-226.
- Libman, D. & Huang, L. (2013). Chemistry on the go: review of chemistry apps on smartphones. Journal of Chemical Education, 90(3), 320-325. https://doi.org/10.1021/ed300329e
- Lindgren, R. & Schwartz, D. L. (2009). Spatial learning and computer simulations in science. International Journal of Science Education, 31(3), 419-438. https://doi.org/10.1080/09500690802595813
- Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learner’s prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education and Technology, 17(5), 466-482. https://doi.org/10.1007/s10956-008-9115-5
- Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. https://doi.org/10.1207/S15326985EP3801_6
- Oh, J. J. & Kang, G. (2016). History of Gravitational-wave Detection Experiments. New Phys.: Sae Mulli, 66, 264-271. https://doi.org/10.3938/NPSM.66.264
- Park, H. J. (2013). A study of middle school science teachers' perceptions on science lessons with experiments. Journal of Science Education, 37(1), 79-86. https://doi.org/10.21796/jse.2013.37.1.79
- Park, J. (2017). An Analysis on the changes of achievement standards and inquiry activities in the 2015 revised national elementary school science curriculum. Journal of Korean Elementary Science Education, 36(1), 43-60. https://doi.org/10.15267/keses.2017.36.1.043
- Park, J. S. & Jung, K. M. (2010). Analyzing experiment illustrations and error in illustrations in high school chemistry 1 textbooks. Journal of the Korean Association for Science Education, 30(2), 181-191.
- Park, S. K., Kang, M. J., & Kim, S. D. (2001). The development of web-based instruction program on oceanography unit and the analysis of its effects in Earth Science class. Journal of the Korean Association for Research in Science Education, 21(2), 264-278.
- Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., Verkuilen, J., Ng, F., Wang, Y., & Barrientos, J. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394-419. https://doi.org/10.1002/tea.21008
- Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2009). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386. https://doi.org/10.1207/s15327809jls1303_4
- Rutten, N., Van Joolingen, W. R., & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017
- Schutz, P. A. & Pekrun, R. E. (2007). Emotion in education. Boston: Elsevier Academic Press.
- Smetana, L. K. & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. https://doi.org/10.1080/09500693.2011.605182
- Trundle, K. C. & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. https://doi.org/10.1016/j.compedu.2009.10.012
- Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485. https://doi.org/10.1037/a0026609
- Wang, J. Y., Wu, H. K., Chien, S. P., Hwang, F. K., & Hsu, Y. S. (2015). Designing applications for physics learning: Facilitating high school students’ conceptual understanding by using tablet pcs. Journal of Educational Computing Research, 51(4), 441-458. https://doi.org/10.2190/EC.51.4.d
- Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705-735. https://doi.org/10.1080/09500690500038520
- Yang, I. H., Jeong, J. W., Kim, Y. S., Kim, M. K., & Cho, H. J. (2006). Analyses of the aims of laboratory activity, interaction, and inquiry process within laboratory instruction in secondary school science. Journal of the Korean earth science society, 27(5), 509-520.
- Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. https://doi.org/10.1002/tea.10112