DOI QR코드

DOI QR Code

Design and Effects of Science Simulation Applications Using Flash and ActionScript 3.0: In the Composition of Material Chapter in Middle School Science Textbooks

Flash와 Actionscript 3.0을 이용한 과학 시뮬레이션 앱의 디자인 및 효과 -중학교 과학 '물질의 구성' 단원을 중심으로-

  • Received : 2018.07.12
  • Accepted : 2018.08.17
  • Published : 2018.08.31

Abstract

Although a simulation is proposed as a candidate for alternative contents of inquiry activities, design cases focused on the characteristic of science education are rare. This study suggested the definition and requirements of science simulation to clarify science subject-specific design and set up the design guidelines to consider usability. Then the science simulation was developed in the form of an app for mobile devices, where 'Flash and Actionscript 3.0' was selected as a development tool for compatibility, functionality, ease of use and optimization for mobile devices with educational applicability in mind. In effect, six science simulation apps were prepared for seven classes of inquiry activity in 10 science classes on the chapter of 'composition of material' in middle school science 2 textbooks. In this regard, the main advantages of the simulation apps expected from each design characteristic are also suggested in this article. In the implementation of the science simulation apps, educational effects were investigated based on the statistical comparison, while 134 students in the second grade in a coeducational middle school, Gyeonggi-do participated as an intervention group and a control group. Our results showed that the scores of academic achievement and affective test in the intervention group were significantly higher than those of the control group (p <.05). In the questionnaire survey on usability, most students responded positively to the design of the science simulation apps. This study will contribute to expanding the horizon of design about science simulation as a design case in science education.

탐구실험 활동의 대안으로 시뮬레이션의 도입이 제안되고 있으나, 과학교육의 특수성에 초점을 둔 디자인 사례는 드문 편이다. 본 연구는 과학 교과에 특화된 시뮬레이션의 디자인을 제안하고자 이것의 정의와 요건을 제안하였고, 사용성을 고려하기 위하여 디자인 가이드 라인을 설정하였다. 이어서 과학 시뮬레이션을 모바일기기용 앱의 형태로 개발하였다. 이때 개발도구는 교육적 활용성을 염두에 두고, 호환성, 기능성, 용이성, 모바일의 최적화를 고려하여 Flash와 Actionscript 3.0을 선택하였다. 실제로 과학 시뮬레이션 앱은 중학교 과학2 교과서 '물질의 구성' 단원을 기반으로 총 10차시 수업 중 7차시 탐구활동을 위해 모두 6개 제작되었다. 본 연구는 각 앱의 디자인으로부터 예상되는 탐구활동의 이점을 탐색하였고, 본문에 제시하였다. 또한, 과학 시뮬레이션 앱들을 경기도에 소재한 남녀공학 중학교의 2학년 학생 연구참여자 134명 중 처치반 67명 학생에게 적용하였고, 대조반 학생 67명과의 통계적 비교를 기반으로 교육적 효과를 조사하였다. 연구 결과, 처치반 학생들의 학업성취도, 정서적 검사도구의 점수는 모두 대조반 학생들보다 유의하게 높게 나타났다(p<.05). 사용성에 관한 설문조사에서도 처치반 학생들은 대부분 과학 시뮬레이션의 디자인에 대해 긍정적으로 응답하였다. 본 연구는 과학 교과의 디자인 사례연구로, 과학 시뮬레이션의 디자인에 관한 지평을 확장하는 데 기여할 것으로 전망된다.

Keywords

References

  1. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436. https://doi.org/10.1002/(SICI)1098-237X(199807)82:4<417::AID-SCE1>3.0.CO;2-E
  2. Ahmed, S. & Parsons, D. (2013). Abductive science inquiry using mobile devices in the classroom. Computers & Education, 63, 62-72. https://doi.org/10.1016/j.compedu.2012.11.017
  3. Ardito, C., Costabile, M. F., De Marsico, M., Lanzilotti, R., Levialdi, S., Roselli, T., & Rossano, V. (2006). An approach to usability evaluation of e-learning applications. Universal Access in the Information Society, 4(3), 270-283. https://doi.org/10.1007/s10209-005-0008-6
  4. Balamuralithara, B. & Woods, P. C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108-118. https://doi.org/10.1002/cae.20186
  5. Blake, C. & Scanlon, E. (2007). Reconsidering simulations in science education at a distance: features of effective use. Journal of Computer Assisted Learning, 23(6), 491-502. https://doi.org/10.1111/j.1365-2729.2007.00239.x
  6. Chen, S., Chang, W. H., Lai, C. H., & Tsai, C. Y. (2014). A comparison of students’ approaches to inquiry, conceptual learning, and attitudes in simulation-based and microcomputer-based laboratories. Science Education, 98(5), 905-935. https://doi.org/10.1002/sce.21126
  7. Chiu, T. K. & Churchill, D. (2015). Exploring the characteristics of an optimal design of digital materials for concept learning in mathematics: Multimedia learning and variation theory. Computers & Education, 82, 280-291. https://doi.org/10.1016/j.compedu.2014.12.001
  8. Cho, H., Kang, D., Kang, T., Kim, M., Kim, Y., Kim, H., Moon, T., Lee, Y., Lee, J., & Cho, Y. (2011). High school science textbook. Seoul: Chunjae Education.
  9. Cober, R., Tan, E., Slotta, J., So, H. J., & Konings, K. D. (2015). Teachers as participatory designers: Two case studies with technology-enhanced learning environments. Instructional Science, 43(2), 203-228. https://doi.org/10.1007/s11251-014-9339-0
  10. Edelson, D. C. (2001). Learning-for-use: A framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 38(3), 355-385. https://doi.org/10.1002/1098-2736(200103)38:3<355::AID-TEA1010>3.0.CO;2-M
  11. Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. Educational Psychologist, 34(3), 169-189. https://doi.org/10.1207/s15326985ep3403_3
  12. Eryilmaz, E., Chiu, M. M., Thoms, B., Mary, J., & Kim, R. (2014). Design and evaluation of instructor-based and peer-oriented attention guidance functionalities in an open source anchored discussion system. Computers & Education, 71, 303-321. https://doi.org/10.1016/j.compedu.2013.08.009
  13. Fraser, B. J. (1981). Test of science-related attitudes (TOSRA). Australian Council for Educational Research.
  14. Glynn, S. M., Brickman, P., Armstrong, N., & Taasoobshirazi, G. (2011). Science motivation questionnaire II: Validation with science majors and nonscience majors. Journal of Research in Science Teaching, 48(10), 1159-1176. https://doi.org/10.1002/tea.20442
  15. Gustafson, K. L. & Branch, R. M. (1997). Revisioning models of instructional development. Educational Technology Research and Development, 45(3), 73-89. https://doi.org/10.1007/BF02299731
  16. Han, Y. H., Jeun, E. S., & Paik, S. H. (2014). Analysis of scientific inquiry elements in middle school science textbooks, teachers cognition, and an experiment case. Journal of the Korean Association for Science Education, 34(4), 349-357. https://doi.org/10.14697/jkase.2014.34.4.0349
  17. Hirsh-Pasek, K., Zosh, J. M., Golinkoff, R. M., Gray, J. H., Robb, M. B., & Kaufman, J. (2015). Putting education in "educational" apps lessons from the science of learning. Psychological Science in the Public Interest, 16(1), 3-34. https://doi.org/10.1177/1529100615569721
  18. Hoffler, T. N. & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722-738. https://doi.org/10.1016/j.learninstruc.2007.09.013
  19. Jin, S. H. (2013). Visual design guidelines for improving learning from dynamic and interactive digital text. Computers & Education, 63, 248-258. https://doi.org/10.1016/j.compedu.2012.12.010
  20. Johnson, D. & Wiles, J. (2003). Effective affective user interface design in games. Ergonomics, 46(13-14), 1332-1345. https://doi.org/10.1080/00140130310001610865
  21. Kang, M., Kim, H. S., & Lee, J. (2011). The effects of flow and cognitive presence on learning outcomes in a middle school science class using web-based simulation. Journal of Educational Information and Media, 17(1), 39-61.
  22. Kapur, M. (2010). Productive failure in mathematical problem solving. Instructional Science, 38(6), 523-550. https://doi.org/10.1007/s11251-009-9093-x
  23. Kim, K. S., Lee, S. W., & Noh, T. H. (2009). The relationships among elementary school students' cognitive, affective, and behavioral characteristics related to science learning and their perceptions toward scientific and/or technological professions. Journal of Korean Elementary Science Education, 28(2), 121.131.
  24. Kim, M. H. & Kim, Y. (2012). Preference and actuality for science laboratory and teaching environment of science teachers’ in primary and secondary school. Journal of the Korean Association for Science Education, 32(10), 1567-1579.
  25. Kim, S. H., Kim, Y. B., Kang, S. J., Kim, H. C., Shin, J. H., Park, S. H., & Min, B. C. (2008). Korean education longitudinal study 2005 (IV). Seoul: Korean Educational Development Institute.
  26. Kim, Y., Son, J., & Song, Y. (2010). Analysis of the biology major teachers' misconceptions on the pathway of image formation in eye vision. Biology Education, 38(2), 331-341. https://doi.org/10.15717/bioedu.2010.38.2.331
  27. Kim, Y. Y. & Chung, H. M. (2012). The development of scaffolding guidelines for instructors to promote students’ self-directed learning. Journal of Educational Studies, 43(1), 1-31.
  28. Klein, J., Moon, Y., & Picard, R. W. (2002). This computer responds to user frustration: Theory, design, and results. Interacting with Computers, 14(2), 119-140. https://doi.org/10.1016/S0953-5438(01)00053-4
  29. Kort, B., Reilly, R., & Picard, R. W. (2001). An Affective Model of Interplay between Emotions and Learning: Reengineering Educational Pedagogy-Building a Learning Companion. In Proceedings IEEE International Conference on Advanced Learning Technologies (pp. 43-46). Madison, WI. USA.
  30. Lai, C. H., Yang, J. C., Chen, F. C., Ho, C. W., & Chan, T. W. (2007). Affordances of mobile technologies for experiential learning: the interplay of technology and pedagogical practices. Journal of Computer Assisted Learning, 23(4), 326-337. https://doi.org/10.1111/j.1365-2729.2007.00237.x
  31. Lee, C. Y. (2015). The effects of smart applications in didactic instructions on inquiry activities : The development and application of smart applications (Unpublished master's thesis). Seoul National University, Seoul.
  32. Lee, C. Y. & Hong, H. (2017). Development of a science simulation to support authentic observation in precipitation reactions. School Science Journal, 11(2), 236-245.
  33. Lee, Y. M., Kang, M. H., Yoon, S. H., & Park, J. Y. (2016). Analysis of predicting variables of the 21st century skills in elementary smart-learning using smart-pads. The Journal of Elementary Education, 29(4), 201-226.
  34. Libman, D. & Huang, L. (2013). Chemistry on the go: review of chemistry apps on smartphones. Journal of Chemical Education, 90(3), 320-325. https://doi.org/10.1021/ed300329e
  35. Lindgren, R. & Schwartz, D. L. (2009). Spatial learning and computer simulations in science. International Journal of Science Education, 31(3), 419-438. https://doi.org/10.1080/09500690802595813
  36. Liu, H. C., Andre, T., & Greenbowe, T. (2008). The impact of learner’s prior knowledge on their use of chemistry computer simulations: A case study. Journal of Science Education and Technology, 17(5), 466-482. https://doi.org/10.1007/s10956-008-9115-5
  37. Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52. https://doi.org/10.1207/S15326985EP3801_6
  38. Oh, J. J. & Kang, G. (2016). History of Gravitational-wave Detection Experiments. New Phys.: Sae Mulli, 66, 264-271. https://doi.org/10.3938/NPSM.66.264
  39. Park, H. J. (2013). A study of middle school science teachers' perceptions on science lessons with experiments. Journal of Science Education, 37(1), 79-86. https://doi.org/10.21796/jse.2013.37.1.79
  40. Park, J. (2017). An Analysis on the changes of achievement standards and inquiry activities in the 2015 revised national elementary school science curriculum. Journal of Korean Elementary Science Education, 36(1), 43-60. https://doi.org/10.15267/keses.2017.36.1.043
  41. Park, J. S. & Jung, K. M. (2010). Analyzing experiment illustrations and error in illustrations in high school chemistry 1 textbooks. Journal of the Korean Association for Science Education, 30(2), 181-191.
  42. Park, S. K., Kang, M. J., & Kim, S. D. (2001). The development of web-based instruction program on oceanography unit and the analysis of its effects in Earth Science class. Journal of the Korean Association for Research in Science Education, 21(2), 264-278.
  43. Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., Verkuilen, J., Ng, F., Wang, Y., & Barrientos, J. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394-419. https://doi.org/10.1002/tea.21008
  44. Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2009). A scaffolding design framework for software to support science inquiry. The Journal of the Learning Sciences, 13(3), 337-386. https://doi.org/10.1207/s15327809jls1303_4
  45. Rutten, N., Van Joolingen, W. R., & Van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153. https://doi.org/10.1016/j.compedu.2011.07.017
  46. Schutz, P. A. & Pekrun, R. E. (2007). Emotion in education. Boston: Elsevier Academic Press.
  47. Smetana, L. K. & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370. https://doi.org/10.1080/09500693.2011.605182
  48. Trundle, K. C. & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088. https://doi.org/10.1016/j.compedu.2009.10.012
  49. Um, E., Plass, J. L., Hayward, E. O., & Homer, B. D. (2012). Emotional design in multimedia learning. Journal of Educational Psychology, 104(2), 485. https://doi.org/10.1037/a0026609
  50. Wang, J. Y., Wu, H. K., Chien, S. P., Hwang, F. K., & Hsu, Y. S. (2015). Designing applications for physics learning: Facilitating high school students’ conceptual understanding by using tablet pcs. Journal of Educational Computing Research, 51(4), 441-458. https://doi.org/10.2190/EC.51.4.d
  51. Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705-735. https://doi.org/10.1080/09500690500038520
  52. Yang, I. H., Jeong, J. W., Kim, Y. S., Kim, M. K., & Cho, H. J. (2006). Analyses of the aims of laboratory activity, interaction, and inquiry process within laboratory instruction in secondary school science. Journal of the Korean earth science society, 27(5), 509-520.
  53. Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. https://doi.org/10.1002/tea.10112