DOI QR코드

DOI QR Code

Effect of Yarns Cross-Sections and Structure Parameters of Its Knitted Fabrics to Moisture Transport of Perspiration Absorption and Fast Dry Fabrics

실 단면 형상과 니트 구조 인자가 흡한속건 소재의 수분이동 특성에 미치는 영향

  • 김현아 (한국패션산업연구원 연구개발본부)
  • Received : 2018.04.27
  • Accepted : 2018.07.27
  • Published : 2018.08.31

Abstract

This study examined the water absorption and drying properties of the thirteen types of the knitted fabrics for sports wear. These physical properties were analysed with relation to the constituent fiber cross-sectional shape and structure parameters of the knitted fabrics by regression analysis. Absorption and drying properties of the knitted fabric specimens were increased with increasing the porosity of the constituent yarns, which was attributed to the capillary channels in the yarns. The water absorption and drying properties were increased and decreased with increasing tightness factor and stitch density of the knitted fabric. The absorption property of the knitted fabric for perspiration absorption and fast dry sport-wear clothing was mostly influenced mostly by fiber cross-sectional shape and its characteristics, whereas, drying property was dependent on the structural parameters of the knitted fabric such as tightness factor and stitch density. Therefore, superior perspiration absorption and fast drying knitted fabric could be obtained in the fabric structure with optimum tightness factor and stitch density, and constituent yarn structure with non-circular fiber crosssection and high porosity. GATS method and MMT method are used to measure sweating fast drying properties and it is necessary to carry out studies using these measurement methods in order to compare with the results of this study.

Keywords

References

  1. Au, K. F. (2011). Advances in knitting technology (1st ed.). Cambridge: Woodhead Publishing Limited.
  2. Das, A., & Alagirusamy, R. (2010). Science in clothing comfort. New Delhi: Woodhead Publishing India PVT LTD.
  3. Das, B., Das, A., Kothari, V. K., Fanguiero, R., & de Araujo, M. (2007). Moisture transmission through textiles. Part II: Evaluation methods and mathematical modelling. AUTEX Research Journal, 7(3), 194-216.
  4. Fangueiro, R., Filgueiras, A., Soutinho, F., & Meidi, X. (2010). Wicking behavior and drying capability of functional knitted fabrics. Textile Research Journal, 80(15), 1522-1530. doi:10.1177/0040517510361796
  5. Ghali, K., Jones, B., & Tracy, J. (1994). Experimental techniques for measuring parameters describing wetting and wicking in fabrics. Textile Research Journal, 64(2), 106-111. doi:10.1177/004051759406400206
  6. Guo, Y., Li, Y., Tokura, H., Wong, T., Chung, J., Wong, A. S., ... & Hang Mei Leung, P. (2008). Impact of fabric moisture transport properties on physiological responses when wearing protective clothing. Textile Research Journal, 78(12), 1057-1069. doi:10.1177/0040517508090496
  7. Harnett, P. R., & Mehta, P. N. (1984). A survey and comparison of laboratory test methods for measuring wicking. Textile Research Journal, 54(7), 471-478. doi:10.1177/004051758405400710
  8. Hsieh, Y. L. (1995). Liquid transport in fabric structures. Textile Research Journal, 65(5), 299-307. doi:10.1177/004051759506500508
  9. Hu, J., Li, Y., Yeung, K. W., Wong, A. S. W., & Xu, W. (2005). Moisture management tester: A method to characterize fabric liquid moisture management properties. Textile Research Journal, 75(1), 57-62. doi:10.1177/004051750507500111
  10. Kim, E. A., & Barker, R. L. (1993). Evaluation method of the water transport properties of sweat absorbent fabrics. Journal of the Korean Society of Clothing and Textiles, 17(2), 219-338.
  11. Korean Standards Association. (2016, December 28). KS K 0815 Test methods for knitted fabrics. Korean Standards Service Network. Retrieved April 10, 2018, from https://standard.go.kr/KSCI/unitysearch/unitySearch.do
  12. Laing, R. M., Wilson, C. A., Gore, S. E., Carr, D. J., & Niven, B. E. (2007). Determining the drying time of apparel fabrics. Textile Research Journal, 77(8), 583-590. doi:10.1177/0040517507078232
  13. Mahbub, R. F., Wang, L., Arnold, L., Kaneslingam, S., & Padhye, R. (2014). Thermal comfort properties of kevlar and kevlar/wool blends. Textile Research Journal, 82(19), 2094-2102. doi:10.1177/0040517514532157
  14. McConnell, W. J. (1982). Gravimetric absorbency tester, US Patent No. 4357827 A. NEW JERSEY: U.S. CHICOPEE, A CORP.
  15. Nyoni, A. B., & Brook, D. (2006). Wicking mechanisms in yarns-the key to fabric wicking performance. The Journal of the Textile Institute, 97(2), 119-128. doi:10.1533/joti.2005.0128
  16. Ozkan, E. T., & Meric, B. (2014). Thermophysiological comfort properties of different knitted fabrics used in cycling clothes. Textile Research Journal, 85(1), 62-70. doi:10.1177/0040517514530033
  17. Perwuelz, A., Mondon, P., & Caze, C. (2000). Experimental study of capillary flow in yarns. Textile Research Journal, 70(4), 333-339. doi:10.1177/004051750007000409
  18. Supuren, G., Oglakcioglu, N., Ozdil, N., & Marmarali, A. (2011). Moisture management and thermal absorptivity properties of double-face knitted fabrics. Textile Research Journal, 81(13), 1320-1330. doi:10.1177/0040517511402122
  19. Troynikov, O., & Wardiningsih, W. (2011). Moisture management properties of wool/polyester and wool/bamboo knitted fabrics for the sportswear base layer. Textile Research Journal, 81(6), 621-631. doi:10.1177/0040517510392461
  20. Wang, N., Zha, A., & Wang, J. (2008). Study on the wicking property of polyester filament yarns. Fibers and Polymers, 9(1), 97-100. doi:10.1007/s12221-008-0016-2
  21. Yanilmaz, M., & Kalaoglu, F. (2012). Investigation of wicking, wetting and drying properties of acrylic knitted fabrics. Textile Research Journal, 82(8), 820-831. doi:10.1177/0040517511435851