참고문헌
- Chen, Y., Jin, G., Zhu, M., Liu, Z., Du, J., Li, W.L., 2012. Vibration behaviours of a boxtype structure built up by plates and energy transmission through the structure. J. Sound Vib. 331, 849-867. https://doi.org/10.1016/j.jsv.2011.10.002
- Cho, D.S., Kim, S.S., Jung, S.M., 1998. Structural intensity analysis of stiffened plate using assumed mode method. J. Soc. Nav. Arch. Korea 35(4), 76-86.
- Cho, D.S., Chung, S.M., Kim, J.H., 2003. Numerical analysis on the affection of lumped attachments to the vibration power flow in cross-stiffened plate. J. Soc. Nav. Arch. Korea 40(1), 36-46. https://doi.org/10.3744/SNAK.2003.40.1.036
- Cho, D.S., Vladimir, N., Choi, T.M., 2014. Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings. Int. J. Nav. Archit. Ocean Eng. 6, 763-774. https://doi.org/10.2478/IJNAOE-2013-0210
- Cho, D.S., Kim, B.H., Vladimir, N., Choi, T.M., 2015a. Natural vibration analysis of rectangular bottom plate structures in contact with fluid. Ocean Eng. 103, 171-179. https://doi.org/10.1016/j.oceaneng.2015.04.078
- Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M., 2015b. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin-Walled Struct. 90, 182-190. https://doi.org/10.1016/j.tws.2015.01.020
- Cho, D.S., Choi, T.M., Kim, J.H., Vladimir, N., 2016. Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method. Thin-Walled Struct. 109, 1-12. https://doi.org/10.1016/j.tws.2016.09.015
- Eck, T., Walsh, S.J., 2012. Measurement of vibrational energy flow in a plate with high energy flow boundary crossing using electronic speckle pattern interferometry. Appl. Acoust 73, 936-951. https://doi.org/10.1016/j.apacoust.2012.04.002
- Gavric, L., Pavic, G., 1993. A finite element method for computation of structural intensity by the normal mode approach. J. Sound Vib. 164, 29-43. https://doi.org/10.1006/jsvi.1993.1194
- Hambric, S.A., 1990. Power flow and mechanical intensity calculations in structural finite element analysis. J. Vib. Acoust. 112, 542-549. https://doi.org/10.1115/1.2930140
- Hambric, S.A., Szwerc, R.P., 1999. Prediction of structural intensity fields using solid finite element. Noise Control Eng. J. 47, 209-217. https://doi.org/10.3397/1.599317
- Khun, M.S., Lee, H.P., Lim, S.P., 2004. Structural intensity in plates with multiple discrete and distributed spring-dashpot systems. J. Sound Vib. 276, 627-648. https://doi.org/10.1016/j.jsv.2003.08.002
- Lee, H.P., Lim, S.P., Khun, M.S., 2006. Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique. J. Sound Vib. 296, 602-622. https://doi.org/10.1016/j.jsv.2006.03.007
- Liu, Z.S., Lee, H.P., Lu, C., 2005. Structural intensity study of plates under lowvelocity impact. Int. J. Impact Eng. 31, 957-975. https://doi.org/10.1016/j.ijimpeng.2004.06.010
- MSC Software, 2010a. MSC/Patran-PAT304 (PCL and Customization). Macneal-Schwendler Co., Newport Beach, CA.
- MSC Software, 2010b. MD Nastran 2010 Dynamic Analysis User's Guide. Macneal-Schwendler Co., Newport Beach, CA.
- Navazi, H.M., Nokhbatolfoghahaei, A., Ghobad, Y., Haddadpour, H., 2016. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis. J. Sound Vib. 375, 289-307. https://doi.org/10.1016/j.jsv.2016.03.023
- Noiseux, D.U., 1970. Measurement of power flow in uniform beams and plates. J. Acoust. Soc. Am. 47, 238-247. https://doi.org/10.1121/1.1911472
- Pavic, G., 1976. Measurement of structure borne wave intensity, Part I: formulation of the methods. J. Sound Vib. 49, 221-230. https://doi.org/10.1016/0022-460X(76)90498-3
- Pavic, G., 1987. Structural surface intensity: an alternative approach in vibration analysis and diagnosis. J. Sound Vib. 115, 405-422. https://doi.org/10.1016/0022-460X(87)90286-0
- Park, Y.H., Hong, S.Y., 2008. Vibrational power flow models for transversely vibrating finite Mindlin plate. J. Sound Vib. 317, 800-840. https://doi.org/10.1016/j.jsv.2008.03.049
- Pascal, J.C., Carniel, X., Li, J.F., 2006. Characterisation of a dissipative assembly using structural intensity measurements and energy conservation equation. Mech. Syst. Signal Process. 20, 1300-1311. https://doi.org/10.1016/j.ymssp.2005.11.012
- Petrone, G., De Vendittis, M., De Rosa, S., Franco, F., 2016. Numerical and experimental investigations on structural intensity in plates. Compos. Struct. 140, 94-105. https://doi.org/10.1016/j.compstruct.2015.12.034
- Saijyou, K., Yoshikawa, S., 1996. Measurement of structural and acoustic intensities using near-field acoustical holography. Jpn. J. Appl. Phys. 35, 3167-3174. https://doi.org/10.1143/JJAP.35.3167
- Tian, X., Liu, G., Gao, Z., Chen, P., Mu, W., 2017. Crack detection in offshore platform based on structural intensity approach. J. Sound Vib. 389, 236-249. https://doi.org/10.1016/j.jsv.2016.11.020
- Tran, T.Q.N., Lee, H.P., Lim, S.P., 2007. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration. Compos. Struct. 78, 70-83. https://doi.org/10.1016/j.compstruct.2005.08.019
- Troitsky, M.S., 1976. Stiffened Plates: Bending, Stability and Vibrations. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
- Verheij, J.W., 1980. Cross spectral density methods for measuring structure borne power flow on beams and pipes. J. Sound Vib. 70, 133-139. https://doi.org/10.1016/0022-460X(80)90559-3
- Xu, X.D., Lee, H.P., Lu, C., 2004a. The structural intensities of composite plates with a hole. Compos. Struct. 65, 493-498. https://doi.org/10.1016/j.compstruct.2004.01.011
- Xu, X.D., Lee, H.P., Lu, C., 2004b. Numerical study on energy transmission for rotating hard disk systems by structural intensity technique. Int. J. Mech. Sci. 46, 639-652. https://doi.org/10.1016/j.ijmecsci.2004.04.002
- Xu, X.D., Lee, H.P., Wang, Y.Y., Lu, C., 2004c. The energy flow analysis in stiffened plates of marine structures. Thin-Walled Struct. 42, 979-994. https://doi.org/10.1016/j.tws.2004.03.006
피인용 문헌
- Structural intensity assessment on shells via a finite element approximation vol.145, pp.1, 2019, https://doi.org/10.1121/1.5087564
- Dynamic Analysis of Rectangular Plate Stiffened by Any Number of Beams with Different Lengths and Orientations vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2364515
- Effects of mount positions on vibrational energy flow transmission characteristics in aero-engine casing structures vol.39, pp.2, 2018, https://doi.org/10.1177/1461348419845506
- Meshless simulation and experimental study on forced vibration of rectangular stiffened plate vol.518, pp.None, 2018, https://doi.org/10.1016/j.jsv.2021.116602