DOI QR코드

DOI QR Code

Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique

  • 투고 : 2017.08.09
  • 심사 : 2017.11.18
  • 발행 : 2018.09.30

초록

Stiffened panels are widely used in naval architecture and ocean engineering, and knowledge about their dynamic behaviour represents important issue in the design procedure. Ordinary vibration analysis consists of natural frequencies and mode shapes determination and can be extended to forced response assessment, while the Structural Intensity (SI) analysis, assessing magnitude and direction of vibrational energy flow provides information on dominant transmission paths and energy distribution including sink positions. In this paper, vibrational energy flow in stiffened panels under harmonic loading is analyzed by the SI technique employing the finite element method. Structural intensity formulation for plate and beam element is outlined, and developed system combining in-house code and general finite element tool is described. As confirmed within numerical examples, the developed tool enables separation of SI components, enabling generation of novel SI patterns and providing deeper insight in the vibrational energy flow in stiffened panels, comparing to existing works.

키워드

참고문헌

  1. Chen, Y., Jin, G., Zhu, M., Liu, Z., Du, J., Li, W.L., 2012. Vibration behaviours of a boxtype structure built up by plates and energy transmission through the structure. J. Sound Vib. 331, 849-867. https://doi.org/10.1016/j.jsv.2011.10.002
  2. Cho, D.S., Kim, S.S., Jung, S.M., 1998. Structural intensity analysis of stiffened plate using assumed mode method. J. Soc. Nav. Arch. Korea 35(4), 76-86.
  3. Cho, D.S., Chung, S.M., Kim, J.H., 2003. Numerical analysis on the affection of lumped attachments to the vibration power flow in cross-stiffened plate. J. Soc. Nav. Arch. Korea 40(1), 36-46. https://doi.org/10.3744/SNAK.2003.40.1.036
  4. Cho, D.S., Vladimir, N., Choi, T.M., 2014. Numerical procedure for the vibration analysis of arbitrarily constrained stiffened panels with openings. Int. J. Nav. Archit. Ocean Eng. 6, 763-774. https://doi.org/10.2478/IJNAOE-2013-0210
  5. Cho, D.S., Kim, B.H., Vladimir, N., Choi, T.M., 2015a. Natural vibration analysis of rectangular bottom plate structures in contact with fluid. Ocean Eng. 103, 171-179. https://doi.org/10.1016/j.oceaneng.2015.04.078
  6. Cho, D.S., Kim, B.H., Kim, J.H., Vladimir, N., Choi, T.M., 2015b. Forced vibration analysis of arbitrarily constrained rectangular plates and stiffened panels using the assumed mode method. Thin-Walled Struct. 90, 182-190. https://doi.org/10.1016/j.tws.2015.01.020
  7. Cho, D.S., Choi, T.M., Kim, J.H., Vladimir, N., 2016. Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method. Thin-Walled Struct. 109, 1-12. https://doi.org/10.1016/j.tws.2016.09.015
  8. Eck, T., Walsh, S.J., 2012. Measurement of vibrational energy flow in a plate with high energy flow boundary crossing using electronic speckle pattern interferometry. Appl. Acoust 73, 936-951. https://doi.org/10.1016/j.apacoust.2012.04.002
  9. Gavric, L., Pavic, G., 1993. A finite element method for computation of structural intensity by the normal mode approach. J. Sound Vib. 164, 29-43. https://doi.org/10.1006/jsvi.1993.1194
  10. Hambric, S.A., 1990. Power flow and mechanical intensity calculations in structural finite element analysis. J. Vib. Acoust. 112, 542-549. https://doi.org/10.1115/1.2930140
  11. Hambric, S.A., Szwerc, R.P., 1999. Prediction of structural intensity fields using solid finite element. Noise Control Eng. J. 47, 209-217. https://doi.org/10.3397/1.599317
  12. Khun, M.S., Lee, H.P., Lim, S.P., 2004. Structural intensity in plates with multiple discrete and distributed spring-dashpot systems. J. Sound Vib. 276, 627-648. https://doi.org/10.1016/j.jsv.2003.08.002
  13. Lee, H.P., Lim, S.P., Khun, M.S., 2006. Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique. J. Sound Vib. 296, 602-622. https://doi.org/10.1016/j.jsv.2006.03.007
  14. Liu, Z.S., Lee, H.P., Lu, C., 2005. Structural intensity study of plates under lowvelocity impact. Int. J. Impact Eng. 31, 957-975. https://doi.org/10.1016/j.ijimpeng.2004.06.010
  15. MSC Software, 2010a. MSC/Patran-PAT304 (PCL and Customization). Macneal-Schwendler Co., Newport Beach, CA.
  16. MSC Software, 2010b. MD Nastran 2010 Dynamic Analysis User's Guide. Macneal-Schwendler Co., Newport Beach, CA.
  17. Navazi, H.M., Nokhbatolfoghahaei, A., Ghobad, Y., Haddadpour, H., 2016. Experimental measurement of energy density in a vibrating plate and comparison with energy finite element analysis. J. Sound Vib. 375, 289-307. https://doi.org/10.1016/j.jsv.2016.03.023
  18. Noiseux, D.U., 1970. Measurement of power flow in uniform beams and plates. J. Acoust. Soc. Am. 47, 238-247. https://doi.org/10.1121/1.1911472
  19. Pavic, G., 1976. Measurement of structure borne wave intensity, Part I: formulation of the methods. J. Sound Vib. 49, 221-230. https://doi.org/10.1016/0022-460X(76)90498-3
  20. Pavic, G., 1987. Structural surface intensity: an alternative approach in vibration analysis and diagnosis. J. Sound Vib. 115, 405-422. https://doi.org/10.1016/0022-460X(87)90286-0
  21. Park, Y.H., Hong, S.Y., 2008. Vibrational power flow models for transversely vibrating finite Mindlin plate. J. Sound Vib. 317, 800-840. https://doi.org/10.1016/j.jsv.2008.03.049
  22. Pascal, J.C., Carniel, X., Li, J.F., 2006. Characterisation of a dissipative assembly using structural intensity measurements and energy conservation equation. Mech. Syst. Signal Process. 20, 1300-1311. https://doi.org/10.1016/j.ymssp.2005.11.012
  23. Petrone, G., De Vendittis, M., De Rosa, S., Franco, F., 2016. Numerical and experimental investigations on structural intensity in plates. Compos. Struct. 140, 94-105. https://doi.org/10.1016/j.compstruct.2015.12.034
  24. Saijyou, K., Yoshikawa, S., 1996. Measurement of structural and acoustic intensities using near-field acoustical holography. Jpn. J. Appl. Phys. 35, 3167-3174. https://doi.org/10.1143/JJAP.35.3167
  25. Tian, X., Liu, G., Gao, Z., Chen, P., Mu, W., 2017. Crack detection in offshore platform based on structural intensity approach. J. Sound Vib. 389, 236-249. https://doi.org/10.1016/j.jsv.2016.11.020
  26. Tran, T.Q.N., Lee, H.P., Lim, S.P., 2007. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration. Compos. Struct. 78, 70-83. https://doi.org/10.1016/j.compstruct.2005.08.019
  27. Troitsky, M.S., 1976. Stiffened Plates: Bending, Stability and Vibrations. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.
  28. Verheij, J.W., 1980. Cross spectral density methods for measuring structure borne power flow on beams and pipes. J. Sound Vib. 70, 133-139. https://doi.org/10.1016/0022-460X(80)90559-3
  29. Xu, X.D., Lee, H.P., Lu, C., 2004a. The structural intensities of composite plates with a hole. Compos. Struct. 65, 493-498. https://doi.org/10.1016/j.compstruct.2004.01.011
  30. Xu, X.D., Lee, H.P., Lu, C., 2004b. Numerical study on energy transmission for rotating hard disk systems by structural intensity technique. Int. J. Mech. Sci. 46, 639-652. https://doi.org/10.1016/j.ijmecsci.2004.04.002
  31. Xu, X.D., Lee, H.P., Wang, Y.Y., Lu, C., 2004c. The energy flow analysis in stiffened plates of marine structures. Thin-Walled Struct. 42, 979-994. https://doi.org/10.1016/j.tws.2004.03.006

피인용 문헌

  1. Structural intensity assessment on shells via a finite element approximation vol.145, pp.1, 2019, https://doi.org/10.1121/1.5087564
  2. Dynamic Analysis of Rectangular Plate Stiffened by Any Number of Beams with Different Lengths and Orientations vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/2364515
  3. Effects of mount positions on vibrational energy flow transmission characteristics in aero-engine casing structures vol.39, pp.2, 2018, https://doi.org/10.1177/1461348419845506
  4. Meshless simulation and experimental study on forced vibration of rectangular stiffened plate vol.518, pp.None, 2018, https://doi.org/10.1016/j.jsv.2021.116602