DOI QR코드

DOI QR Code

Social Media Analysis Based on Keyword Related to Educational Policy Using Topic Modeling

토픽모델링을 이용한 교육정책 키워드 기반 소셜미디어 분석

  • Chung, Jin-myeong (School of Information Security, Kyungpook National Univ.) ;
  • Park, Young-ho (School of Electronics Engineering, Kyungpook National Univ.) ;
  • Kim, Woo-ju (Department of Industrial Engineering, Yonsei Univ.)
  • Received : 2018.03.27
  • Accepted : 2018.06.04
  • Published : 2018.08.31

Abstract

The traditional mass media function of conveying information and forming public opinion has rapidly changed into an environment in which information and opinions are shared through social media with the development of ICT technology, and such social media further strengthens its influence. In other words, it has been confirmed that the influence of the public opinion through the production and sharing of public opinion on political, social and economic changes is increasing, and this change is already in use on the political campaign. In addition, efforts to grasp and reflect the opinions of the public by utilizing social media are being actively carried out not only in the political area but also in the public area. The purpose of this study is to explore the possibility of using social media based public opinion in educational policy. We collected media data, analyzed the main topic and probability of occurrence of each topic, and topic trends. As a result, we were able to catch the main interest of the public(the 'Domestic Computer Education Time' accounted for 43.99%, and 'Prime Project Selection' topics was 36.81% and 'Artificial Intelligence Program' topics was 7.94%). In addition, we could get a suggestion that flexible policies should be established according to the timing of the curriculum and the subject of the policy even if the category of the policy is same.

정보를 전달하고 여론을 형성하는 전통적인 매스미디어의 기능이 ICT 기술의 발전으로 소셜미디어를 통해 정보와 의견을 공유하는 환경으로 급격하게 변해 왔으며, 그 영향력을 더욱 강화시키고 있다. 즉, 일반 대중들이 소셜미디어를 통해 정치 사회 경제 변화에 대한 여론을 생산하고 공유하는 여론의 영향력이 갈수록 커지고 있는 것이 확인되고 있으며, 그 변화는 선거활동과 같은 정치 분야에서 활용되고 있다. 소셜미디어를 활용해서 대중들의 의사를 파악하고, 반영하기 위한 노력은 정치 영역뿐만 아니라 공공 영역에서도 활발하게 이루어지고 있다. 본 논문은 교육분야 정책과정에서 소셜미디어 기반 여론을 활용하기 위한 가능성을 탐색하는 것을 목적으로 한다. 이를 위해 교육정책 중 소프트웨어교육에 관한 키워드를 중심으로 데이터를 수집하고, 문서의 주요 토픽과 토픽별 출현 확률, 토픽 트렌드를 분석하였다. 그 결과 '국내 컴퓨터 교육 시간'토픽이 전체의 43.99%를 차지하였으며, '프라임 사업 선정' 토픽이 36.81%, '인공지능 프로그램'토픽이 7.94%의 출현 확률을 나타내어, 대중의 소프트웨어교육 정책에 대한 주요 관심도를 파악할 수 있었다. 또한, 시기별 토픽 추세 및 연관성 있는 토픽간의 트렌드 비교 분석을 통하여 동일한 주제의 정책이라도 교육과정의 시기와 정책의 대상에 따라 유연한 정책수립이 필요하다는 시사점을 도출할 수 있었다.

Keywords

References

  1. Jin-Myeong Chung, Woo-Joo Kim, Chan-dong Koo, "Social Media Big Data Analysis for ICT Policy Agenda in Education," pp. 4, Korea Education and Research Service(KERIS), 2016. http://lib.keris.or.kr/search/detail/CATLAB000000012076?briefLink=/searchA/lab?briefType=L?st=KWRD_A_si=TOTAL_A_q=%EB%B9%85%EB%8D%B0%EC%9D%B4%ED%84%B0
  2. Jin-hyong Lee, "Proliferation and Trends of SNS(Social Network Service)," Journal of Communication &Radio Spectrum, Vol. 44, 2012. https://www.kca.kr/open_content/bbs.do?act=detail&msg_no=10462&bcd=radiotrends&keyfield=bbs_title&keyword=SNS
  3. A. Livne, M. Simmons, E. Adar, and L. Adamic, "The Party is Over Here : Structure and Content in the 2010 Election," Proceedings of 5th ICWSM(2011). https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/viewFile/2852/3272
  4. You-Jung Hong, Joo-Seong Hwang, "Social Media vs. Mass Media in the Policy Agenda-setting Process : The Case of the Gwangju Inhwa School Incident(Dogani)," Broadcasting & Communication, Vol. 16, No. 1, 2015. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE06268584
  5. Hyun-jae Yu, Ji-eun Song, "Investigation into the Styles of Articles Regarding Suicide by Different Media: Comparison of the Styles between Internet Media and Newspapers," Health and Social Welfare Review, Vol. 32, No 2, pp. 427-467, 2012. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01899750 https://doi.org/10.15709/hswr.2012.32.2.427
  6. Russell Neuman, W.Guggenheim, Lauren Mo Jang, S. Soo Young Bae, "The Dynamics of Public Attention: Agenda-Setting Theory Meets Big Data", Vol. 64, No 2, pp. 193-214, 2014 https://doi.org/10.1111/jcom.12088
  7. Eun Mee Kim, Ju Hyun Lee "The Diffusion of News through Twitter and the Emerging Media Ecosystem," Korean Journal of Journalism & Communication Studies, Vol. 55, No. 6, pp. 152-180, 2011. http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01757395
  8. Jin-myeong Chung, Ki-young Yoo, Chan-dong Koo, "A Study on Social Media Sentiment Analysis for Exploring Public Opinions Related to Education Policies", Vol 24, No 4, pp. 3-16, 2017. http://www.papersearch.net/thesis/article.asp?key=3578607 https://doi.org/10.22693/NIAIP.2017.24.4.003
  9. Jin-Ho Choi, Dong-Sub Han, "A Study on the Correlation of Agendas between Politicians' Twitters and traditional News Media," Journal of Communication Science, Vol. 11, No. 2, pp. 501-532, 2011.
  10. D. Blei, "Probabilistic Topic Models," Communication of the ACM, Vol. 55, No. 4, pp. 77-84, April. 2012. https://doi.org/10.1145/2133806.2133826
  11. M. Steyvers and T. Griffiths, "Probabilistic Topic Models," Handbook of latent semantic analysis. Analysis. Edited by T. K. Landauer, D. S. McNamara, S. Dennis, W. Kintsch. NJ: Erlbaum, 2007. http://173.236.226.255/tom/papers/SteyversGriffiths.pdf
  12. T. Griffiths, & M. Steyvers, "Finding scientific topics," Proceedings of the National Academy of Sciences, Vol. 101, pp. 5228-5235, 2004. https://doi.org/10.1073/pnas.0307752101
  13. S. Gerrish, and D. Blei, "A Language-based Approach to Measuring Scholarly Impact," The 27th International Conference on Machine Learning, pp. 375-382, 2010. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.4459&rep=rep1&type=pdf
  14. Jung-ha Hong, Jae-Woong Choe, "Exploring the Thematic Structure in Corpora with Topic Modeling," Language & Information Society, Vol. 30, pp. 239-275, 2017. http://www.papersearch.net/thesis/article.asp?key=3507933
  15. Jung-hwan Bae, Ji-eun Son and Min Song, "Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques," Journal of Intelligent Information System, Vol. 19, No. 3, pp. 141-156, 2013. http://dx.doi.org/10.13088/jiis.2013.19.3.141
  16. Beom-il Kang, Min Song, and Wha-sun Jho, "A Study on Opinion Mining of Newspaper Texts based on Topic Modeling," Journal of the Korean Society for Library and Information Science, Vol. 47, No. 4, pp. 315-334, 2013. http://www.dbpia.co.kr/Article/NODE02321458 https://doi.org/10.4275/KSLIS.2013.47.4.315
  17. Sang-Min Park and Byung-Won On, "Latent topics-based product Reputation Mining," Journal of Intelligent Information System, Vol. 23, No. 2, pp. 39-70, 2017. http://dx.doi.org/10.13088/jiis.2017.23.2.03

Cited by

  1. 토픽모델링을 활용한 대학생의 중도탈락 데이터 분석 vol.25, pp.1, 2021, https://doi.org/10.6109/jkiice.2021.25.1.88