References
- C. Bentes, A. Frost, D. Velotto, and B. Tings, "Ship-iceberg discrimination with convolutional neural networks in high resolution SAR images," in EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Proceedings of, pp. 1-4, 2016. https://doi.org/10.1109/joe.2017.2767106
- K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biol. Cybern., vol. 36, no. 4, pp. 193-202, 2016. https://doi.org/10.1007/bf00344251
- Kaggle.com, "Statoil/C-CORE Iceberg Classifier Challenge l Kaggle." [Online]. Available: https://www.kaggle.com/c/statoil-iceberg-classifier-challenge/data. [Accessed: 24-Feb-2018].
- J. Ding, B. Chen, H. Liu, and M. Huang, "Convolutional Neural Network with Data Augmentation for SAR Target Recognition," IEEE Geosci. Remote Sens. Lett., vol. 13, no. 3, pp. 364-368, 2016. https://doi.org/10.1109/lgrs.2015.2513754
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Adv. Neural Inf. Process. Syst., pp. 1-9, 2012.
- D. C. Cireşan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, "High-Performance Neural Networks for Visual Object Classification," 2011. https://doi.org/10.1145/3065386
- D. Cireşan, U. Meier, and J. Schmidhuber, "Multi-column Deep Neural Networks for Image Classification," Int. Conf. Pattern Recognit., no. February, pp. 3642-3649, 2012. https://doi.org/10.1109/cvpr.2012.6248110
- R. Wagner, M. Thom, R. Schweiger, G. Palm, and A. Rothermel, "Learning convolutional neural networks from few samples," Proc. Int. Jt. Conf. Neural Networks, pp. 1884-1890, 2013. https://doi.org/10.1109/ijcnn.2013.6706969
- W. Zhao, "Research on the deep learning of the small sample data based on transfer learning," vol. 020018, p. 020018, 2017. https://doi.org/10.1063/1.4992835
- N. . C. B. . P.-S. A. . C. A. . Chakraborty D.a b Kovvali, "Structural damage detection with insufficient data using transfer learning techniques," Proc. SPIE - Int. Soc. Opt. Eng., vol. 7981, no. May, pp. 1-9, 2011. https://doi.org/10.1117/12.882025
- E. Attema et al., "Sentinel-1 ESA's new European SAR mission," Proc. SPIE, vol. 6744, pp. 674403-674403-8, 2007. https://doi.org/10.1117/12.747146
- Y. Z. Jeff Hwang, "Image Colorization with Deep Convolutional Neural Networks," Cs231N. Stanford.Edu, 2016. https://doi.org/10.1109/icmla.2016.0019
- W. McKinney, "Data Structures for Statistical Computing in Python," Proc. 9th Python Sci. Conf., vol. 1697900, no. Scipy, pp. 51-56, 2010.
- K. Simonyan and A. Zisserman, "Very Deep Networks for Large-Scale Image Recognition,", pp. 1-14, 2014. https://doi.org/10.1109/cvpr.2014.219
- V. Nair and G. E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines," Proc. 27th Int. Conf. Mach. Learn., no. 3, pp. 807-814, 2010. https://doi.org/10.1109/icassp.2010.5495651
- L. Prechelt, "Early stopping - But when?," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7700 LECTU, pp. 53-67, 2012.
- S. Ruder, "An overview of gradient descent optimization algorithms,", pp. 1-14, 2016
- D. P. Kingma and J. L. Ba, "Adam: A Method for Stochastic Optimization," arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980.
Cited by
- A Feature-Based Malicious Executable Detection Approach Using Transfer Learning vol.21, pp.5, 2018, https://doi.org/10.7472/jksii.2020.21.5.57
- Review of Ice Characteristics in Ship-Iceberg Collisions vol.35, pp.5, 2018, https://doi.org/10.26748/ksoe.2021.060