References
- E. Cambria, B. Schuller, Y. Xia, and C. Havasi, "New Avenues in Opinion Mining and Sentiment Analysis," IEEE Intell. Syst., vol. 28, no. 2, pp. 15-21, 2013. https://doi.org/10.1109/MIS.2013.30
- Y. Kim, R. Dwivedi, J. Zhang, and S. R. Jeong, "Competitive intelligence in social media Twitter: iPhone 6 vs. Galaxy S5," Online Inf. Rev., vol. 40, no. 1, pp. 42-61, 2016. https://doi.org/10.1108/OIR-03-2015-0068
- Y. Liu, "Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue," J. Mark., vol. 70, no. 3, pp. 74-89, Jul. 2006. https://doi.org/10.1509/jmkg.70.3.74
- Y. Kim, D. Y. Kwon, and S. R. Jeong, "Comparing Machine Learning Classifiers for Movie WOM Opinion Mining," KSII Trans. Internet Inf. Syst., vol. 9, no. 8, pp. 3178-3190, 2015.
- H. Rui, Y. Liu, and A. Whinston, "Whose and what chatter matters? The effect of tweets on movie sales," Decis. Support Syst., vol. 55, no. 4, pp. 863-870, Nov. 2013. https://doi.org/10.1016/j.dss.2012.12.022
- Jin-Cheon Na, T. T. Thet, and C. S. G. Khoo, "Comparing sentiment expression in movie reviews from four online genres," Online Inf. Rev., vol. 34, no. 2, pp. 317-338, 2010. https://doi.org/10.1108/14684521011037016
- B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up?: sentiment classification using machine learning techniques," in Proc. of Conf. Empir. Methods Nat. Lang. Process., pp. 79-86, 2002.
- Y. Liu, Y. Chen, R. F. Lusch, H. Chen, D. Zimbra, and S. Zeng, "User-Generated Content on Social Media: Predicting Market Success with Online Word-on-Mouth," IEEE Intell. Syst., vol. 25, no. 1, pp. 8-12, 2010. https://doi.org/10.1109/MIS.2010.146
- Y. Rao, J. Lei, L. Wenyin, Q. Li, and M. Chen, "Building emotional dictionary for sentiment analysis of online news," World Wide Web, 2013.
- J. Lim and J. Kim, "An Empirical Comparison of Machine Learning Models for Classifying Emotions in Korean Twitter," J. Korea Multimed. Soc., vol. 17, no. 2, pp. 232-239, 2014. https://doi.org/10.9717/kmms.2014.17.2.232
- G. P. Sonnier, L. McAlister, and O. J. Rutz, "A Dynamic Model of the Effect of Online Communications on Firm Sales," Mark. Sci., vol. 30, no. 4, pp. 702-716, Jul. 2011. https://doi.org/10.1287/mksc.1110.0642
- B. Pang and L. Lee, Opinion Mining and Sentiment Analysis. 2008.
- H. Chen and D. Zimbra, "AI and Opinion Mining," IEEE Intell. Syst., vol. 25, no. 3, pp. 74-76, May 2010. https://doi.org/10.1109/MIS.2010.75
- A. Ortigosa, J. M. Martín, and R. M. Carro, "Sentiment analysis in Facebook and its application to e-learning," Comput. Human Behav., vol. 31, no. 1, pp. 527-541, 2014. https://doi.org/10.1016/j.chb.2013.05.024
- H. Chen, "Business and Market Intelligence 2.0, Part 2," IEEE Intell. Syst., vol. 25, no. 2, pp. 2-5, Mar. 2010. https://doi.org/10.1109/MIS.2010.123
- J. Bollen, H. Mao, and X. Zeng, "Twitter mood predicts the stock market," J. Comput. Sci., vol. 2, no. 1, pp. 1-8, Mar. 2011. https://doi.org/10.1016/j.jocs.2010.12.007
- C. Wu, Z. Chuang, and Y. Lin, "Emotion Recognition from Text Using Semantic Labels and Separable Mixture Models," ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 5, no. 2, pp. 165-181, 2006. https://doi.org/10.1145/1165255.1165259
- C. Hung and H. K. Lin, "Using objective words in sentiwordnet to improve word-of-mouth sentiment classification," IEEE Intell. Syst., vol. 28, no. 2, pp. 47-54, 2013. https://doi.org/10.1109/MIS.2013.1
- Y. Kim, S. R. Jeong, and I. Ghani, "Text Opinion Mining to Analyze News for Stock Market Prediction," Int. J. Adv. Soft Comput. Its Appl., vol. 6, no. 1, 2014.
- Z. Shi, H. Rui, and A. Whinston, "Content sharing in a social broadcasting environment: evidence from twitter," Mis Q., vol. 38, no. 1, pp. 123-142, 2014. https://doi.org/10.25300/MISQ/2014/38.1.06
Cited by
- 장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구 vol.21, pp.1, 2018, https://doi.org/10.7472/jksii.2020.21.1.127
- Popularity prediction of movies: from statistical modeling to machine learning techniques vol.79, pp.47, 2018, https://doi.org/10.1007/s11042-019-08546-5
- Design and Application of Mobile Education Information System Based on Psychological Education vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/1789750
- Improving productivity in Hollywood with data science: Using emotional arcs of movies to drive product and service innovation in entertainment industries vol.72, pp.5, 2018, https://doi.org/10.1080/01605682.2019.1705194