DOI QR코드

DOI QR Code

Assessment of Offshore Wind Power Potential for Turbine Installation in Coastal Areas of Korea

터빈설치를 위한 한국 연안 해상풍력발전 부존량 평가

  • Kang, Keum Seok (Korea Electric Power Research Institute) ;
  • Oh, Nam Sun (Ocean.Plant Construction Engineering, Mokpo Maritime National University) ;
  • Ko, Dong Hui (Coastal Development and Energy Research Center, Korea Institute of Ocean Science & Technology) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Hwang, Jae Dong (Department of Civil and Environmental Engineering, Wonkwang University)
  • 강금석 (한국전력공사 전력연구원) ;
  • 오남선 (목포해양대학교 해양.플랜트건설공학과) ;
  • 고동휘 (한국해양과학기술원 연안개발.에너지연구센터) ;
  • 정신택 (원광대학교 토목환경공학과) ;
  • 황재동 (원광대학교 토목환경공학과)
  • Received : 2018.07.25
  • Accepted : 2018.08.27
  • Published : 2018.08.31

Abstract

In this paper, wind data at 20 locations are collected and analyzed in order to review optimal candidate site for offshore wind farm around Korean marginal seas. Observed wind data is fitted to Rayleigh and Weibull distribution and annual energy production is estimated according to wind frequency. As the model of wind turbine generator, seven kinds of output of 1.5~5 MW were selected and their performance curves were used. As a result, Repower-5 MW turbines showed high energy production at wind speeds of 7.15 m/s or higher, but G128-4.5 MW turbines were found to be favorable at lower wind speeds. In the case of Marado, Geojedo and Pohang, where the rate of occurrence of wind speeds over 10 m/s was high, the capacity factor of REpower's 5 MW offshore wind turbine was 56.49%, 50.92% and 50.08%, respectively.

본 연구에서는 한국 연안의 해상풍력 발전을 위한 적지를 검토하기 위해 기상청에서 제공하는 20개 지점의 풍속 자료를 수집하고 이를 분석하였다. 관측된 풍속 자료의 분석을 위하여 Rayleigh 모델과 Weibull 모델을 이용하였으며, 풍속 출현빈도에 따라 연간 부존량을 추정하였다. 풍력발전기 모델로는 출력 1.5~5 MW의 7종류를 선정하여 각각의 성능곡선을 이용하였다. 그 결과, 풍속이 7.15 m/s 이상인 지점에서는 Repower-5 MW의 터빈이 높은 에너지 생산이 가능한 것으로 나타났으나 그 이하의 풍속에서는 G128-4.5 MW의 터빈이 유리한 것으로 나타났다. 10 m/s 이상의 풍속 출현율이 높은 마라도, 거제도 및 포항의 경우 REpower사의 5 MW급 해상풍력발전기 설치 시 설비이용률이 56.49%, 50.92%, 50.08%로 높게 나타났다.

Keywords

References

  1. Ahmed, M.A., Ahmad, F. and Akhtar, M.W. (2006). Assessment of wind power potential for coastal areas of Pakistan. Turk J. Phys., 30, 127-135.
  2. Aynur, U. and Figen, B. (2010). Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renew Sustain Energy Rev., 14, 1901-1912. https://doi.org/10.1016/j.rser.2010.03.021
  3. Cliff, W.C. (1977). The effect of generalized wind characteristics on annual power estimates from wind turbine generators. Battelle.
  4. Coastal Development Institute of Technology (2001). Technology manual of offshore wind power. CDIT (In Japanese).
  5. Ethiopian Resource Group (2009). Diversity and security for the Ethiopian power system: a preliminary assessment of risks and opportunities for the power sector.
  6. Garrad, A. (1991). Wind energy in Europe: a plan of action, summary report of wind energy in Europe-time for action. The European Wind Energy Association.
  7. Higgins, P. and Foley, A. (2014). The Evolution of Offshore Wind Power in the United Kingdom. Renewable and Sustainable Energy Reviews, 37, 599-612. https://doi.org/10.1016/j.rser.2014.05.058
  8. Hwang, B.S. (2010). An understanding of advanced wind turbines, Korea, A-JIN (in Korean).
  9. International Energy Agency (2013). Technology Roadmap-Wind energy. 2013 edition, IEA, Paris, 1-53.
  10. Ilinca, A., McCarthy, E., Chaumel, J.L. and Retiveau, J.L. (2003). Wind potential assessment of Quebec Province. Renewable Energy, 28, 1881-97. https://doi.org/10.1016/S0960-1481(03)00072-7
  11. Irwanto, M., Gomesh, N., Mamta, M.R. and Yusoff, Y.M. (2014). Assessment of wind power generation potential in Perlis, Malaysia. Renewable and Sustainable Energy Reviews, 38, 296-308. https://doi.org/10.1016/j.rser.2014.05.075
  12. Ko, D.H., Jeong, S.T., Cho, H.Y., Kim, J.Y. and Kang, K.S. (2012). Error analysis on the Offshore Wind Speed Estimation using HeMOSU-1 Data. Journal of Korean Society of Coastal and Ocean Engineers, 24(5), 326-332 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.5.326
  13. Ko, D.H., Jeong, S.T. and Kang, K.S. (2015). Assessment of Offshore Wind Power Potential in the Western Seas of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 27(4), 266-273 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.4.266
  14. Korean Meteorological Administration (2015). http://www.kma.go.kr (in Korean).
  15. Korean Meteorological Administration (2007). Research Report for Development of Wind Resource Map (in Korean).
  16. Kose, R. (2004). An evaluation of wind energy potential as a power generation source in Kutahya, Turkey. Energy Conversion and Management, 45, 1631-1641. https://doi.org/10.1016/j.enconman.2003.10.016
  17. Lee, M.-E., Kim, G., Jeong, S.-T., Ko, D.-H. and Kang, K.-S. (2013). Assessment of offshore wind energy at Younggwang in Korea. Renewable and Sustainable Energy Reviews, 21, 131-141. https://doi.org/10.1016/j.rser.2012.12.059
  18. Manwell, J.F., McGowan, J.G. and Rogers, A.L. (2002). Wind energy explained:theory, design and application. Amherst. USA, John Wiley & Sons, 2002.
  19. Mirhosseini, M., Sharifi, F. and Sedaghat, A. (2011). Assessing the wind energy potential locations in province of Semnan in Iran. Renewable and Sustainable Energy Reviews, 15, 2545-2556. https://doi.org/10.1016/j.rser.2011.02.030
  20. Mwanyika, H.H. and Kainkwa, R.M. (2006). Determination of the power law exponent for southern highlands of tanzania. Tanzania Journal of Science, 32, 104.
  21. Wind Europe (2017). Offshore Wind in Europe, Key trends and statistics 2017.