DOI QR코드

DOI QR Code

4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint

강조 모델제한을 적용한 전기비저항 모니터링 자료의 4차원 역산

  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University) ;
  • Jeong, Da-Bhin (Division of Geology and Geophysics, Kangwon National University)
  • 조인기 (강원대학교 지질.지구물리학부) ;
  • 정다빈 (강원대학교 지질.지구물리학부)
  • Received : 2018.07.16
  • Accepted : 2018.08.03
  • Published : 2018.08.31

Abstract

The resistivity monitoring is a practical method to resolve changes in resistivity of underground structures over time. With the advance of sophisticated automatic data acquisition system and rapid data communication technology, resistivity monitoring has been widely applied to understand spatio-temporal changes of subsurface. In this study, a new 4D inversion algorithm is developed, which can effectively emphasize significant changes of underground resistivity with time. To overcome the overly smoothing problem in 4D inversion, the Lagrangian multipliers in the space-domain and time-domain are determined automatically so that the proportion of the model constraints to the misfit roughness remains constant throughout entire inversion process. Furthermore, a focusing model constraint is added to emphasize significant spatio-temporal changes. The performance of the developed algorithm is demonstrated by the numerical experiments using the synthetic data set for a time-lapse model.

전기비저항 모니터링은 지하 매질의 시간적 변화를 파악하기 위한 효과적인 물리탐사법이다. 전기비저항 모니터링은 최근 정교한 자동측정 장비와 통신기술의 발달에 힘입어 지하의 시공간적 물성변화의 탐지를 위하여 널리 사용되고 있다. 이 연구에서는 지하 매질의 의미있는 시공간적 변화대를 효과적으로 해석할 수 있는 4차원 역산 알고리듬을 개발하였다. 4차원 역산의 문제점인 시간축을 따른 지나친 평활화 제한 문제를 극복하기 위하여 자료오차에 대한 시공간 모델제한을 일정하게 유지하도록 라그랑지 곱수를 자동으로 조정하였다. 또한 강조 모델제한자를 도입하여 보다 선명하게 지하의 시공간 변화대를 영상화하고자 하였다. 시간경과 모델에 대한 수치자료에 대하여 개발된 4차원 역산을 수행하여 개발된 역산 알고리듬의 타당성을 검토하였다.

Keywords

References

  1. Cassiani, G., Bruno, V., Villa, A., Fusi, N., and Binley, A. M., 2006, A saline trace test monitored via time-lapse surface electrical resistivity tomograph, J. Appl. Geophys., 59(3), 244-259. https://doi.org/10.1016/j.jappgeo.2005.10.007
  2. Cho, I. K., Ha, M. J., and Yong, H. S., 2013, Effective data weighting and cross-model constraint in time-lapse inversion of resistivity monitoring data, J. Korea Inst. Mineral Mining Eng., 50(2), 264-277.
  3. Constable, S. C., Parker, R. L., and Constable, C. G., 1987, Occam's inversion: a practical algorithm for generating smooth models from EM sounding data, Geophysics, 52(3), 289-300. https://doi.org/10.1190/1.1442303
  4. Day-Lewis, F. D., Harris, J. M., and Gorelick, S. M., 2002, Time-lapse inversion of crosswell radar data, Geophysics, 67(6), 1740-1752. https://doi.org/10.1190/1.1527075
  5. Hayley, K., Pidlisecky, A., and Bentley, L. R., 2011, Simultaneous time-lapse electrical resistivity inversion, J. Appl. Geophys., 75(2), 401-411. https://doi.org/10.1016/j.jappgeo.2011.06.035
  6. Jayawickreme, D. H., Van Dam, R. L., and Hyndman, D. W., 2010. Hydrological consequences of land-cover change: quantifying the influence of plants on soil moisture with timelapse electrical resistivity, Geophysics, 75(4), WA43-A50. https://doi.org/10.1190/1.3464760
  7. Karaoulis, M., Kim, J. H., and Tsourlos, P. I., 2011, 4D active time constrained inversion, J. Appl. Geophys., 73(1), 25-34. https://doi.org/10.1016/j.jappgeo.2010.11.002
  8. Karaoulis, M., Tsourlos, P. I., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints, Near Surf. Geophys., 12(1), 25-34.
  9. Kemna, A., Vanderborght, J., Kulessa, B., and Vereecken, H., 2002, Imaging and characterization of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models, J. Hydrol., 267(3-4), 125-146. https://doi.org/10.1016/S0022-1694(02)00145-2
  10. Kim, J. G., Park, S. G., Yi, M. J., and Kim, J. H., 2010, Tracing solute infiltration using a combined method of dye tracer test and electrical resistivity tomography in an undisturbed forest soil profile, Hydrol. Process., 24(21), 2977-2982. https://doi.org/10.1002/hyp.7711
  11. Kim, K. J., and Cho, I. K., 2011, Time-lapse inversion of 2D resistivity monitoring data with spatially varying cross-model constraint, J. Appl. Geophys., 72(2-3), 114-122. https://doi.org/10.1016/j.jappgeo.2010.07.008
  12. Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model, J. Appl. Geophys., 68(4), 522-532. https://doi.org/10.1016/j.jappgeo.2009.03.002
  13. Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Fourdimensional inversion of resistivity monitoring data through Lp norm minimizations, Geophys. J. Int., 195(3), 1640-1656. https://doi.org/10.1093/gji/ggt324
  14. LaBrecque, D. J., and Yang, X., 2001, Difference inversion of ERT data, A fast inversion method for 3-D in-situ monitoring, J. Environ. and Engin. Geophys., 6(2), 83-89. https://doi.org/10.4133/JEEG6.2.83
  15. Loke, M. H., Dahlin, T., and Rucker, D. F., 2014, Smoothnessconstrained time-lapse inversion of data from 3D resistivity surveys, Near Surf. Geophys., 12(1), 5-24.
  16. Loke, M. H., 1999. Time-lapse resistivity imaging inversion, Proceedings of the 5th Meeting of the Environmental and Engineering European Section, Em1.
  17. Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization, Geophysics, 73(3), G7-G17. https://doi.org/10.1190/1.2907156
  18. Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/ withdrawal experiment in a shallow unconfined aquifer, Geophysics, 72(4), F177-F187. https://doi.org/10.1190/1.2734365
  19. Park, S. G., Kim, J. H., and Seo, G. W., 2005, Application of electrical resistivity monitoring technique to maintenance of embankments, Geophys. and Geophys. Explor., 8(2), 177-183 (in Korean with English abstract).
  20. Slater, L., Binley, A. M., Daily, W., and Johnson, R., 2000, Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophys., 44(2-3), 85-102. https://doi.org/10.1016/S0926-9851(00)00002-1
  21. Yaramanci, Y., 2000, Geoelectric exploration and monitoring in rock salt for the safety assessment of underground waste disposal sites, J. Appl. Geophys., 44(2-3), 181-196. https://doi.org/10.1016/S0926-9851(99)00013-0
  22. Yi, M. J., Kim, J. H., and Chung, S. H., 2003, Enhancing the resolving power of least-squares inversion with active constraint balancing, Geophysics, 68(3), 931-941. https://doi.org/10.1190/1.1581045