References
- Barnett, V. and Lewis, T. (1994). Outliers in Statistical Data (3rd ed), John Wiley & Sons, Chichester.
- Breunig, M., Kriegel, H., Ng, R., and Sander, J. (2000). LOF: identifying density-based local outliers. In SIGMOD '00 Proceedings of the 2000 ACM SIGMOD International Conference on Management of data, Texas, 93-104.
- Butler, R. W., Davies, P. L., and Jhun, M. (1993). Asymptotics for the minimum covariance determinant estimator, The Annals of Statistics, 21, 1385-1400. https://doi.org/10.1214/aos/1176349264
- Charrad, M., Ghazzali, N., Boiteau, V., and Niknafs, A. (2014). NbClust: an R package for determining the relevant number of clusters in a data set, Journal of Statistical Software, 61, 1-36.
- Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD'96 Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Oregon, 226-231.
- Filzmoser, P. (2004). A multivariate outlier detection method, from: http://file.statistik.tuwien.ac.at/filz/papers/minsk04.pdf
- Filzmoser, P., Maronna, R., and Werner, M. (2008). Outlier identification in high dimensions, Computational Statistics & Data Analysis, 52, 1694-1711. https://doi.org/10.1016/j.csda.2007.05.018
- Hawkins, D. M. (1980). Identication of Outliers, Chapman & Hall, London.
- Jayakumar, D. S. and Thomas, B. J. (2013). A new procedure of clustering based on multivariate outlier detection, Journal of Data Science, 11, 69-84.
- Kassambara, A. (2017). Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning, STHDA.
- Kim, S., Kwon, S., and Cook, D. (2000). Interactive visualization of hierarchical clusters using MDS and MST, Metrika, 51, 39-51. https://doi.org/10.1007/s001840000043
- Kriegel, H.-P., Kroger, P., and Zimek, A. (2010). Outlier detection techniques, The 2010 SIAM International Conference on Data Mining.
- Mahalanobis, P. C. (1936). On the generalized distance in statistics. In Proceedings of the National Institute of Sciences (Calcutta), India, 2, 49-55.
- Mojena, R. (1977). Hierarchical grouping methods and stopping rules: an evaluation, The Computer Journal, 20, 359-363. https://doi.org/10.1093/comjnl/20.4.359
- Mojena, R. and Wishart, D. (1980). Stopping rules for Ward's clustering method. In COMPSTAT 1980 Proceedings, Physica-Verlag, 426-432.
- Pamula, R., Deka, J. K., and Nandi, S. (2011). An outlier detection method based on clustering, 2011 Second International Conference on Emerging Applications of Information Technology, 253-256.
- Penny, K. I. and Jolliffe, I. T. (2001). A comparison of multivariate outlier detection methods for clinical laboratory safety data, Journal of the Royal Statistical Society. Series D (The Statistician), 50, 295-308. https://doi.org/10.1111/1467-9884.00279
- Prim, R. C. (1957). Shortest connection networks and some generalizations, Bell System Technical Journal, 36, 1389-1401. https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
- Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, Journal of Computational and Applied Mathematics, 20, 53-65. https://doi.org/10.1016/0377-0427(87)90125-7
- Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The Bagplot: a bivariate boxplot, The American Statistician, 53, 382-387.
- Rousseeuw, P. J. and Van Driessen, K. (1999). A fast algorithm for the minimum covariance determinant estimator, Technometrics, 41, 212-223. https://doi.org/10.1080/00401706.1999.10485670
- Tibshirani, R., Walther, G., and Hastie, T. (2001), Estimating the number of clusters in a data set via the gap statistic, Journal of Royal Statistical Society: Series B (Statistical Methodology), 63, 411-423. https://doi.org/10.1111/1467-9868.00293
- Wickham, H. (2010). ggplot2: Elegant Graphics for Data Analysis, Journal of Statistical Software, 35, Book Review 1.