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Abstract 
For many years, matching in a bipartite graph has been widely used in various assignment problems, such as 
stable marriage problem (SMP). As an application of bipartite matching, the problem of stable marriage is 
defined over equally sized sets of men and women to identify a stable matching in which each person is 
assigned a partner of opposite gender according to their preferences. The classical SMP proposed by Gale and 
Shapley uses preference lists for each individual (men and women) which are infeasible in real world 
applications for a large populace of men and women such as matrimonial websites. In this paper, we have 
proposed an enhancement to the SMP by computing a weighted score for the users registered at matrimonial 
websites. The proposed enhancement has been formulated into profit maximization of matrimonial websites 
in terms of their ability to provide a suitable match for the users. The proposed formulation to maximize the 
profits of matrimonial websites leads to a combinatorial optimization problem. We have proposed greedy and 
genetic algorithm based approaches to solve the proposed optimization problem. We have shown that the 
proposed genetic algorithm based approaches outperform the existing Gale-Shapley algorithm on the dataset 
crawled from matrimonial websites. 
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1. Introduction 

Matching in a bipartite graph aims to assign elements of one set to the elements of another set such 
that no two elements in the same set are associated. It has been successfully employed in many 
applications, such as, hospital-resident allocation, stable roommate problem, allocating tutorials in 
schools and colleges, sailor-boat problem, student project allocation, college admissions, and stable 
marriage problem (SMP), etc. [1-3]. The problem of stable marriage proposed by Gale and Shapely [4] 
is defined over equally sized sets of men and women to identify a stable matching/marriage in which 
each person is assigned a partner of opposite gender according to their preferences. The set of 
assignments or marriages is said to be unstable if there exists a man and a woman who are not married 
to each other but prefer each other to their assigned partners. 

Gale and Shapley [4] proposed a male optimal solution using an iterative process for identifying the 
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stable marriages with preference lists (ordered preferences) maintained for all men and women. In [5], 
the authors extended the work of [4] to incorporate female optimal stable solution and minimum 
choice stable solution. Irving et al. [6] proposed a network flow based approach to find the stable 
marriages with male and female optimal solutions. Further, they also generalized the problem of stable 
marriage according to the weighted preference lists representing the weights of numerical preferences 
maintained by every person in the set. In literature, the problem of stable marriage has gained a lot of 
attention and attracted many researchers to analyze and extend this problem with different variants 
[7-12]. 

Let (1… 	 ) and (1	. . . ) be the two sets of men and women respectively, where  consists of  
number of men and  consists of  number of women, some of the variants of SMP are categorized as 
follows: (a) = , i.e., count of men and women are equal; (b) ≠ , i.e., count of men and women 
are different; and (c) polygamy, where one person is allowed to have multiple spouses [10]. Here, some 
of the earlier variants of SMP utilized the preference lists maintained by individuals, whereas some of 
the recent contributions utilized the weighted preferences or qualitative preferences [9,11]. 

In these variants, SMP aims to arrange the marriages in such a way that men and women should pair 
up knowing the preferences of each man and woman in the populace. However, there may be several 
instances where the population of men and women is very large, such as marriage bureau or 
matrimonial websites, viz. www.bharatmatrimony.com, www.jeevansathi.com, and www.shaadi.com, 
etc., where numerous men and women register to get a suitable, satisfactory and stable match. The SMP 
is not applicable in these instances as it is infeasible for users to rank their partners of opposite gender 
to create the preference lists. Further, these matrimonial websites charge a certain amount of fee from 
the registered users in order to dispense the information of a suitable match [13]. This, in turn, leads to 
generate revenue for matrimonial websites and helps to earn profits. In the context of matrimonial 
websites, there is a need for a strategy which dispenses the preferred information to ensure maximum 
profits in terms of their ability to provide a satisfactory and stable match among the registered users. In 
addition, an efficient approach is needed to compute the preference lists from the information provided 
by the users while registering on a matrimonial website. In the process of registration, users are 
required to make profile by providing personal details (now onwards in this paper we call these details 
as features) viz. height, age, complexion, academic details, job details (viz. salary, experience, etc.), and 
religion, etc. While registration, users are also required to provide the necessary requirements or 
expectations in the partner’s profile of opposite gender viz. someone might be looking for educated and 
good looking partner. 

In this paper we have addressed these two issues: (1) computation of an individual’s preference in the 
large populace of men and women; and (2) finding a satisfactory and stable match for registered users 
to ensure the maximum profit for a matrimonial website. To compute the preferences, we have used the 
Euclidean distance between the expectations of men and profile of women or vice versa. Further, we 
have proposed a combinatorial framework to maximize the profit of a matrimonial website. Several soft 
computing methods, such as genetic algorithm (GA) and particle swarm optimization, etc., have been 
successfully employed in many combinatorial problems [14,15]. To solve our proposed framework we 
have applied GA due to its simplicity in solving combinatorial problems [14] and also proposed a 
Greedy based solution. The proposed methods have been shown to outperform Gale-Shapley algorithm 
on the real dataset crawled from two matrimonial websites. 
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Rest of the paper is organized as follows: in Section 2, we present the problem formulation which 
includes the enhancements proposed in classical SMP. The methodology to solve the proposed 
formulation has been described in Section 3. Further, experiments and results are illustrated in Section 
4. Finally, Section 5 concludes the work. 

 
 

2. Problem Formulation 

This section starts with defining various variables and terminologies used in this paper. In-order to 
meet various expectations of matrimonial websites, we have proposed enhancements for classical SMP, 
which has been discussed later in this section along with the problem statement(s). 

 
2.1 Variables and Terminologies 
 

Throughout the paper we have used two sets, (1… 	 ) and (1	. . . ), where,  is the set of  
men and  is the set of  women registered on a matrimonial website;  is the count of men;  is the 
count of women; ( ) is an instance/element of the set , whereas ( ) is an instance/element of the 
set ; (1… ) is the set of features (viz. height, weight, salary, etc.) describing the man or woman; (1	. . . , (1… ), 1… ) and (1	. . . , (1… ), 1… ) are the sets of the profile of men and 
women respectively which are made-up of various (1… ) features and the respective quantified 
values/scores (at the scale of 5, where 5 represents very good, 4 represents good, 3 represents average, 2 
represents below average, 1 represents bad and 0 represents very bad), viz. (1, 1, 5) represents that 
the value of feature 1, (1) (say salary) in the profile of man, (1) is 5 which is the representation of a 
very good salary; (1	. . . , (1… ), 1… )  and (1	. . . , (1… ), 1… )  are the sets of 
expectations (or requirements) and respective quantified value of men and women respectively in their 
partners of opposite gender, viz. (1, 1, 4) represents that man, (1) is expecting a good (4) value 
of the feature, (1), i.e. salary in the profile of the opposite gender. 

 
2.2 Proposed Enhancements in SMP 
 

Generally a large populace of men and women register on matrimonial websites. So asking them to 
provide their ordered preferences of opposite gender partners seem to be a difficult task for the 
registered users. Further, benefits (or profits) of matrimonial websites are associated either with 
maximum monetary gain or with their ability to provide a suitable or satisfactory matching for each 
man and woman registered on the matrimonial website. If the matrimonial website does not provide 
satisfactory matches to its registered users, surely the website will lose its users and popularity. Hence, 
in this paper, we have focused on the following objective: satisfactory matching for the registered users 
according to their expectations to maximize the profits of matrimonial websites. In order to achieve the 
listed objective, we have proposed following enhancements for SMP. We refer to our proposed 
enhanced SMP as ESMP henceforth. 

Enhancement 1: Instead of qualitative preference lists (ordered preferences) which are maintained by 
each man and woman in classical SMP, we propose to make a quantitative list (weighted preference). In 
the context of matrimonial websites, we propose to create this quantitative list by comparing the 
expectations of an individual with the profile of opposite gender partners. Here, matching of each 
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expectation of an individual with the profile of opposite gender partners is given a weight as some 
feature might be dominating over other, viz. salary may be more dominating than height and should be 
given more weight than height. The computed average of all the matched expectations of an individual 
(say a man, ( ) ∈ ) with the profile of opposite gender (say a woman, ( ) ∈ ) is now onwards 
called as weighted matching. The quantitative list, representing weighted matching for each man with all 
women or vice versa is now onwards called as weighted preference. In this paper, we have used three 
different types of such preferences, viz. Man Weighted Preference (MWP), Woman Weighted 
Preference (WWP), and Combined Weighted Preference (CWP) and are defined as follows: (1. . , 1. . ): This is a weighted preference for each man, ( ) ∈ , (1 < < ) with each 
woman, ( ) ∈ , (1 < < ). ( , ) represents the average of all the expectations of the man, ( ) matched with the profile of the woman, ( ) and defined as follows in Eq. (1). 

 ( , ) = 	 ∑ 	×	, ( ( ( ),			 ( ),			 ),			 ( ( ),			 ( ),		 ))                                 (1) 
 

where, = 1	 	  are the list of expectations of the man, ( );  (at the scale of 100) is a weight 
associated with the  expectation; and  is a function which returns a fractional value (between 0 
and 1) depending on the Euclidean distance between the value  of the  expectation 
( ( ( ), ( ), )) of the man ( ) and the value  of the  profile ( ( ( ), ( ), )) of the 
woman, ( ), if ( ) and ( ) both represent the same feature, viz. salary. 

As defined in Eq. (1), MWP of each man for each woman lies in the range between 0 and 100. 
Further, MWP, if represented in qualitative form, is the men's preference list as used in classical SMP. (1. . , 1. . ): This is a weighted preference for each woman ( ) ∈ , (1 < < ) with each 
man, ( ) ∈ , (1 < < ). ( , ) represents the average of all the matched expectations of 
the woman, ( ) with the man, ( ) and defined as follows in Eq. (2): 

 ( , ) = 	 ∑ 	×	, ( ( ( ),			 ( ),			 ),			 ( ( ),			 ( ),		 	))
                            (2) 

 
where, = 1	 	  are the list of expectations of the woman, ( );  (at the scale of 100) is a weight 
associated with  expectation, and  is a function which returns a fractional value (between 0 and 
1) depending on the Euclidian distance between the value  of the  expectation ( ( ( ),( ), )) of the woman, ( ) and the value  of the  profile ( ( ( ), ( ), )) of the man, ( ), if ( ) and ( ) both represent the same feature, viz. salary. 

As defined in Eq. (2), WWP of each woman for each man lies in the range between 0 and 100. 
Further, its presentation in qualitative form represents the women's preference list as used in classical 
SMP. (1… 	 , 1… 	 ): This is a weighted preference where expectations of each man and woman are 
jointly explored with profiles of each woman and man respectively. ( , ) represents the weighted 
matching jointly computed as the expectations of the man, ( ) matched with the profile of the 
woman, ( ) and expectations of that woman, ( ) matched with the profile of that man, ( ) and 
defined as follows in Eq. (3): 

 ( , ) = 	 	( ,			 )	 	 	( ,			 )	                                                      (3) 
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where, 	( , ) and ( , ) are computed according to Eq. (1) and (2), respectively. As 
defined in Eq. (3), CWP between each man and each woman lies in the range between 0 and 100. 

An example is presented in Fig. 1 (for = = 2) where, one of the CWPs is 85, i.e. (1, 1) =	85. On the scale of 100, CWP of 85 is significantly large and hence suggests that almost all expectations 
of (1), viz. educated, and good looking, etc., are met in (1), viz. she is good looking, educated as 
well as almost all expectations of (1) are met in (1). 

 

 
Fig. 1. An example of CWP. 

 
Enhancement 2: Considering the objective to maximize the profits of matrimonial websites, we have 

modified the stability criteria of the classical SMP as follows; for a CWP, we consider pairing such men 
and women which maximize the average weighted matching (as given in Eq. (4)). Now onwards, we will 
call the average weighted matching as AWM and the maximum average weighted matching as MAWM. 

 MAWM = ∑ ( )                                                      (4) 
 

where,  is the minimum of  and  which are the count of men and women, respectively and under 
inequality, minimum of the two is considered for computing the AWM; ( ) returns the indices of a 
pair of men and women such that for each , the pair of men and women is unique. 

In the example of Fig. 1, there are two possible sets of pairing: (a) (1) with (1) and (2) 
with	 (2), having AWM as 67 i.e. (85 + 49) 2⁄ ; and (b) (1) with (2) and (2) with (1), 
having AWM as 82, i.e. (81 + 83) 2⁄ . Here, MAWM is achieved with the pairing given in Set b. 

 
2.3 Problem Statement(s) 
 

Considering different scenarios, following problem statements have been addressed in this paper. 
DEFINITION 1 (D1): Given sets of  registered men and  registered women (where, = ), each 

with their profile and expectations, it is required to identify a suitable/stable pairing between men and 
women such that profit of the matrimonial website is maximum. 

DEFINITION 2 (D2): Given sets of  registered men and  registered women (where, ≠ ), each 
with their profile and expectations, it is required to identify a suitable/stable pairing such that profit of 
the matrimonial website is maximum. Here, if > , then some men in the list will be unpaired and if < , then some women will be unpaired. 

 
 

3. Proposed Scheme(s) 

As discussed in the previous section, various sets or combinations of pairings between men and 
women are to be explored based on their CWP. Consequently, the proposed ESMP has resulted in a 
combinatorial problem. This section presents our proposed greedy and GA based approaches to solve 
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the ESMP and achieve the desired objective optimally or near optimally. The CWP presented in Fig. 2 
has been used to elaborate the algorithmic steps. 

 

 
Fig. 2. CWP used to elaborate the algorithmic steps discussed in this section. 

 

3.1 Greedy Based Approach (Algorithm 1) 
 

The proposed algorithm is based on the greedy approach where a man under consideration has been 
paired with the best unengaged woman or vice versa. 

 
Step 1: For each man, ( ) ∈  in CWP, create a sorted list in decreasing order of the profile-

expectation based weighted matching with each women, ( ) ∈  using stable sorting 
schemes [16], i.e. maintain the order of the CWPs in the sorted list in case of the tie between 
CWPs of two pairs of men and women. As an example, sorted lists of men (1) and (2) 
created from the CWP of Fig. 2 are depicted in Fig. 3. 

 

 
Fig. 3. Sorted lists of men, (1) and (2) created from the CWP of Fig. 2. 

 
Step 2: Maintain a list, storing the status (initially unengaged) of each woman either as engaged or 

unengaged. 

Step 3: Traverse the sorted lists (an ordered list obtained after applying the stable sorting) for each 
man from the maximum liked woman to the least. In each traversal, select the first woman 
which is yet to be engaged and make the pairing between the selected woman and the man 
under consideration. In case of the tie between CWPs of a man, ( ) with two or more 
unengaged women (say, ( ) and ( )), make the pair between ( ) and ( ), if <  (i.e. 
if, ( ) appears before ( ) in the ordered sorted list), otherwise make the pair between ( ) 
and ( ), and change the woman’s status to engaged. 
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Step 4: Repeat Step 3 until all men (if ≤ ) get paired or all women (if > ) get engaged. 
 
In the preceding example, following pairs or matching will be formed: { (1), (1)}, { (2), (4)}, 

{ (3), (8)}, { (4), (5)}, { (5), (6)}, { (6), (2)}, { (7), (3)}, and { (8), (7)}, 
having the AWM as 73.25. Hence in this example, the MAWM achieved by the presented algorithm 
(Algorithm 1) is 73.25. However, this may or may not be the actual/optimal MAWM as the proposed 
greedy based approach (selecting such unengaged woman to be paired with the man under 
consideration whose CWP is highest) may or may not converge in global maxima, i.e. optimal MAWM. 

 
3.2 Genetic Algorithm Based Approach 
 

This section starts with the discussion over the basic structure of GA and presents the proposed GA 
based approaches for solving the ESMP. 

Usually, GA based optimization involves following: encoding of the actual real world solution space 
to form the computation space or genotype; chromosome, which is one of the possible solutions to a 
problem; population generation, which is a subset of all the possible solutions to a problem; i.e. set of 
chromosomes forms the population; computation of the fitness score of chromosomes; applying 
various operators, viz. selection, crossover and mutation to select chromosomes and generate new off-
spring and if suitable, replaces the existing individuals in the population. 

In line with the basic structure of a GA based optimization, we present two GA based approaches to 
maximize the profits under two scenarios, = , i.e. D1; and ≠ , i.e. D2. Both approaches differ in 
the process of the initial population generation. In the first approach the initial population is formed 
with the chromosomes generated in entirely random manner. In the second approach, the initial 
population is formed with the chromosomes generated in random as well as guided manner. In both 
approaches, the genotype is constructed using at most + 1 symbols, where, = . Here, each symbol 
represents a man index, viz. symbol 1 represents the man, (1), symbol 2 represents the man, (2) 
and so forth. An additional symbol, ‘0’ is used to represent dummy men to be paired with women under 
the scenario where < . 

Further, a chromosome is constituted as a coded string of men-women pairing comprising of their 
unique identification in such an order that first woman, (1) is assigned to the man whose index is 
encoded as the first gene in the chromosome; second woman, (2) is assigned to the man whose index 
is encoded as the second gene in the chromosome and so on. Lengths of the chromosomes under 
different scenarios are as follows: (a) it is  or , when, = 	 , (b) it is , when, > 	 , where some 
of the men to be paired with ( − 	 ) dummy women and not to be considered while computing the 
fitness score of such chromosome, (c) it is , when, < 	 , where some of the women to be paired with 
( − 	 ) dummy men encoded with the symbol, ‘0’, and not to be considered while computing the 
fitness score. Fig. 4(a)–(c) present the examples of such encoding under the scenarios, = 	  (with  
and  as 4),  >  (with = 4 and = 2), and <  (with = 2 and = 4), respectively. In the 
example of Fig. 4(a), the encoded string < 3	1	4	2 > represents the following four pairing: { (3), (1)}, { (1), (2)}, { (4), (3)}, and { (2), (4)}. Further, in the example of Fig. 4(b) the 
encoded string < 3	1	4	2 > represents the following two valid pairing (after discarding the pairing with 
dummy women): { (3), (1)}, and { (1), (2)}. Similarly, in the example of Fig. 4(c) the encoded 
string < 0	1	0	2 > represents two dummy men encoded by the symbol ‘0’. In this example, four pairing 
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is possible (including the pairs made with dummy men). Out of the four, following two are valid pairs 
and contribute in computation of the fitness score: { (1), (2)} and { (2), (4)}. 

 

 
Fig. 4. Example of chromosomes under the scenarios, (a) = 	 , (b) > , and (c) < . 

 

3.2.1 GA based approach with random population (Algorithm 2) 
 

This section discusses the proposed GA based approach where the initial population is created with 
the randomly generated chromosomes. Here we have separately handled the scenarios, = 	  and ≠ , and present two algorithms Algorithm 2.1 and Algorithm 2.2 to handle these scenarios 
respectively. Steps of the proposed algorithms are elaborated through the combined weighted 
preference, CWP given in Fig. 2. 

 
Algorithm 2.1: When, =  
 
Step 1: Randomly make the pairing between men and women such that all men and women are 

uniquely paired. Apply man indices (1 to ) to encode the pairs to constitute a chromosome 
and store it into a population array of length . Repeat the process and obtain the set of 
chromosomes stored in different arrays (each of length ) to generate an initial population. 

 
Fig. 5 presents one of the chromosomes in the initial population, which is generated by making 

random pairs between 8 men and 8 women (whose CWP is presented in Fig. 2) and stored into a 
population array,  of length 8. 

 

 
Fig. 5. An example of a chromosome in the initial population, when = = 8. 

 
Step 2: With respect to the weighted matching jointly computed as expectations of a man, ( ) 

matched with the profile of a woman, ( ) and expectations of that woman, ( ) matched 
with the profile of that man and stored into the CWP, apply Eq. 5 to compute the fitness scores, 

 of the chromosomes in the initial population as follows: 
 

                                             = 
∑ ( ( ),			 )                                                           (5) 
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Fitness score of one of the chromosomes presented as an example in Fig. 5 is computed as (85 + 81 + 92 + 70 + 60 + 70 + 82 + 45) ⁄ 8, i.e. = 73.12. 
 
Step 3: Apply any one of the parent selection strategies, viz. roulette wheel selection, tournament 

selection, etc., to select the parents (two) to be further involved in the process of mating and 
recombine to produce the offspring. 

 
Step 4: Use the parents selected in Step 3 to undergo for the crossover operation. As it is necessary to 

maintain the unique pairing between all men and women in a chromosome, hence apply 
ordered crossover between selected parents to produce the offsprings. In this process, select a 
subset lying between the two crossover points in a parent (say the first parent) and add the 
subset to the first offspring. Further, explore the second parent to find out the symbols/values 
which are missing in the first offspring and add those missing symbols into the first offspring in 
the order they were found in the second parent. Similarly, create the second offspring by 
reversing the role of parents. 

 
Fig. 6 elaborates the Step 4 with two parents selected for the mating in Step 3. Here, the subset 

between two crossover points, 3 and 7 are added into first offspring and remaining symbols have been 
added in the first offspring in the order they were found in the second parent. The second offspring is 
also created in the same manner. 

 

 
Fig. 6. An example of ordered crossover to create offsprings. 

 
Step 5: Randomly mutate the two offsprings created in Step 4. Because of the required unique pairing 

between all men and women in a chromosome, apply swap mutation to select two positions/ 
indices randomly and interchange the values/symbols on these positions of the offsprings. 
Besides swap mutation, one can also select following mutation to maintain the unique pairing: 
scramble mutation and inversion mutation. 
When we apply the swap mutation randomly at positions 4 and 8 on the first offspring (Fig. 6) 
and interchange their values/symbols, following chromosome will be produced: < 7	1	4	6	2	8	5	3 >. Similarly, < 1	3	2	7	4	5	6	8 > is the resulting chromosome, when swap 
mutation is randomly applied at positions 4 and 8 on the second offspring of Fig. 6. 

 
Step 6: Compute the fitness score of the two offsprings generated after the crossover and mutation 

operations. Check their fitness scores with the chromosome having the least fitness in the 
populace and select such chromosome to be the part of the populace having better fitness. 

 
Step 7: Repeat Step 3 to Step 7 until any one of the following is not met: (a) no improvement in the 

population for specified  iterations or (b) total  number of generations has been produced. 
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Algorithm 2.2: When, ≠  
 
Step 1: Considering either −  dummy men (if, > ) or −  dummy women (if, > ), 

make the length of a chromosome as 	( , ). Generate a chromosome by making random 
groupings between  men and  women, such that all men and women are uniquely paired. 
These pairs might involve, either (a) −  dummy men (if, > ) paired with −  women 
besides  valid pairs, or (b) −  dummy women (if, > ) paired with −  men besides 

 valid pairs. Store all the unique pairing into the population array, , representing a 
chromosome. Repeat the process and obtain the set of chromosomes stored in different 
population arrays to generate an initial population. 
An example in Fig. 7(a) presents one of the chromosomes in the initial population. It is 
generated by making random pairs between 8 men and 8 women (whose CWP is presented in 
Fig. 2) and stored into a population array,  of length 8. In this example, we have considered 
3 dummy women, viz. (6), (7), and (8), which are involved in pairing with men, but the 
pairs involving dummy women are not considered while computing the fitness score. Similarly, 
the example in Fig. 7(b) presents a chromosome generated by making random pairs between 8 
men (where, 3 men, (6), (7), and (8) are dummy men) and 8 women. These dummy men 
have been encoded with the symbol ‘0’, whereas men indices (1…5) in the chromosome 
represents the pairing of women with actual/valid men. 

 

 
Fig. 7. An example of chromosomes in the initial population, when (a) > , (b) < . 

 
Step 2: Apply Eqs. (6) and (7) to compute the fitness scores,  of the chromosomes in the initial 

population under the scenarios (a) >   and (b) < , respectively. 
  = 

∑ ( ( ), )
                                                                       (6) 

		 =   
∑ ( ( ), )	, , ( ) ≥ 1                                         (7) 

 
Fitness scores of the chromosomes in preceding examples, Fig. 7(a) and (b) are computed as (85 + 81 + 92 + 70 + 60) ⁄ 5, i.e. = 77.6 (when, > ) and (67 + 43 + 98 + 91 + 55) ⁄ 5, 
i.e. = 71 (when > ), respectively. 

Step 3: Select two parents to be involved in the process of mating and recombine to produce the 
offspring using any one of the parent selection strategies, viz. roulette wheel selection, 
tournament selection, etc. 

Step 4: Apply the ordered crossover between selected parents to produce the offsprings. Here, some 
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of the men which were paired with dummy women (when, > ) may now be paired with 
actual women in the dataset. 
Fig. 8 depicts the offsprings generated after the ordered crossover between the selected parents 
under the scenario > . Here three different men, (1) and (5) along with (8) are 
respectively paired with dummy women, (7), (8), and (6) in the first off-spring, whereas 
in the second offspring, men, (5), (6), and (7) are respectively paired with dummy 
women, (6), (7), and (8). 
Similarly, Fig. 9 depicts the offsprings generated after the ordered crossover between the 
selected parents under the scenario < . Here, women, (1), (2), and (4) are paired 
with dummy men, represented as the symbol, ‘0’ in the first offspring, whereas, (1), (3), 
and (4) are paired with dummy men, represented as the symbol, ‘0’ in the second offspring. 

 

 
Fig. 8. An example of ordered crossover to create offsprings, when > . 

 

 
Fig. 9. An example of ordered crossover to create offsprings, when < . 

 
Step 5: Use swap mutation to swap the randomly selected symbols/bits of the two offsprings created 

in previous step (Step 4). Compute the fitness scores (either using Eq. 6, if >  or Eq. 7, if > ) of the two offsprings generated after the crossover and mutation operations. Check 
these fitness scores with the chromosome having the least fitness in the populace and select such 
chromosome to be the part of the populace having better fitness. 

Step 6: Repeat, Step 3 to Step 6 until any one of the following is not met: (a) no improvement in the 
population for specified  iterations or (b) total  number of generations has been produced. 

 

3.2.2 GA based approach with guided population (Algorithm 3) 
 

This approach is built around the steps of Algorithm 2, discussed in the previous section. Unlike 
Algorithm 2, here some of the chromosomes in the initial population are generated in a guided manner 
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and presented subsequently when =  and ≠ . 
 
Guided Chromosome in Initial Population, when =  
 
Step (a): Identify all such pairs of ( ), 1 < <  and ( ), 1 < <  in CWP for which ( )’s 

best weighted matching is with the woman, ( ) and ( )’s best weighted matching is with the 
man, ( ). Store all such  at the  index in the population array, . 

It can be seen in the CWP of Fig. 2 that, (4)’s best weighted matching is with (5) and also (5)’s 
best weighted matching is with (4). Population array, , storing all such pairing in the CWP of Fig. 
2 after the Step (a) is shown in Fig. 10(a). 

Step (b): One by one identify the pairing for remaining men by getting the best weighted matching of 
a man, ( ) with a woman ( ). Unlike Step (a), here, the best weighted matching for the 
woman, ( ) will not be with the man, ( ). Further, here, we may encounter a scenario where, ( ) may be the best pair for more than one man. In this scenario, ( ) is to be paired with 
such man, ( ) to whom ( ) is having maximum weighted matching. 
In the preceding example, following men are still unpaired after Step (a): (1), (2), (3), (7), and (8). Out of these unpaired men, (3)’s best weighted matching is with (8), and 
there is no other man whose best weighted matching is with (8). Hence, (3) and (8) are 
paired. Further, (1)’s and (2)’s best weighted matching is with (1). Out of (1) and (2), (1)’s best weighted matching is with (1). Hence, (1) and (1) are paired and (2) 
remains unpaired after Step (b). Finally, (7)’s and (8)’s best weighted matching is with (5) 
which is already paired with (4), and hence, (7) and (8) remain unpaired after Step (b). 

Step (c): Randomly pair unpaired men and women (of the previous step) to generate the 
chromosome stored into the population array, . We call this as a guided chromosome. 
As shown in Fig. 10(b), men, (2), (7), and (8) and women, (3), (4), and (7) are 
unpaired after Step (b) and hence to be randomly paired after Step (c). The guided chromosome 
finally stored in the population array,  after the Step (c) is shown in Fig. 10(c). 

 

 
Fig. 10 Generation of a guided chromosome, when = . 

 

Guided Chromosome in Initial Population, when ≠  
 
Under this scenario, generate a guided chromosome in the initial population in the same manner as 

generated for = . Here, instead of actual pairing, some men might be paired with dummy women 
(if, > ) or some women might be paired with dummy men (if, > ). 

The example presented in Fig. 11(a) shows a guided chromosome generated after applying Steps (a), 
(b), and (c) of the previous section on the CWP of Fig. 2 (considering the women, (6), (7), and (8) as dummy women). Here, Step (a) is resulted into following pairs: (6) with (2) and (4) 
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with (5), whereas, Step (b) makes the pairing between (1) and (1). In Step (c), randomly any two 
men, in the current example we have considered, (5) and (8) out of unpaired 5 men are to be 
paired with 2 unpaired women, (3) and (4). Finally, all the unpaired men, (2), (3), and (7) 
are randomly paired with dummy women, (6), (7), and (8) and not to be involved while 
computing the fitness score. 

Similarly, the example presented in Fig. 11(b) shows a guided chromosome generated after applying 
Steps (a), (b), and (c) of the previous section on the CWP of Fig. 2 (considering the men, (6), (7), 
and (8) as dummy men). Here, Step (a) is resulted into following pairs: (4) with (5) and (5) 
with (6), whereas, Step (b) gives the pairing between (1) and (1). In Step (c), randomly any two 
women, in the current example, they are (3) and (7) out of unpaired 5 women are to be paired 
with 2 unpaired men, (2) and (3). Finally, all the unpaired women, (2), (4), and (8) are 
randomly paired (represented as symbol ‘0’) with dummy men, (6), (7), and (8) and not to be 
involved while computing the fitness score. 

 

 
Fig. 11. Generation of the guided chromosomes, when (a) > , (b) < . 

 
Algorithm 3.1: When, =  
 
Step 1: Randomly make the pairing between men and women such that they are uniquely paired and 

generate the set of chromosomes in the initial population. Make sure that one of the 
chromosomes is a guided chromosome generated using the approach discussed earlier with = . 

Step 2: Apply Eq. (5) to compute the fitness scores,  of the chromosomes in the initial population. 

As an example, fitness score of one of the chromosomes presented as the guided chromosome in 
Fig. 10(c) is computed as (85 + 95 + 45 + 89 + 98 + 91 + 56 + 82) ⁄ 8, i.e. = 80.12. 

Step 3: Select two parents from the initial population to be involved in the process of mating. Use the 
Steps 4 and 5 of the Algorithm 2.1 to generate the offsprings after crossover and mutation 
operations. Compute the fitness score of the two offsprings using Eq. (5) and check their fitness 
scores with the least fitted chromosome (i.e., having least fitness) in the populace. Select such 
chromosome to be the part of the populace having better fitness. 

Step 4: Repeat, Step 3 until any one of the following is not met: (a) no improvement in the population 
for specified  iterations or (b) total  number of generations has been produced. 

 

Algorithm 3.2: When, ≠  
 
Step 1: Randomly make the pairing between men and women such that they are uniquely paired and 

generate the set of chromosomes in the initial population. These pairs might involve, either (a) 
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−  dummy men (if, > ) paired with −  women besides  actual pair, or (b) −  
dummy women (if, > ) paired with −  men besides  actual pair. Make sure that in 
either of the case, >  or > , one of the chromosomes is a guided chromosome generated 
using the approach discussed earlier with ≠ . 

Step 2: Apply Eq. (6) (when, > ) or Eq. (7) (when, < ) to compute the fitness scores,  of 
the chromosomes in the initial population. 
As an example, fitness score of one of the chromosomes presented as the guided chromosome in 
Fig. 11(a), when, >  is computed as (85 + 95 + 52 + 89 + 98) ⁄ 5, i.e. = 83.8, whereas 
fitness score of one of the guided chromosome presented in Fig. 11(b), when, >  is 
computed as (85 + 52 + 98 + 91 + 80) ⁄ 5, i.e. = 81.2. 

Step 3: Use the Steps 3, 4 and 5 of the Algorithm 2.2 to select the two parents for mating and generate 
the off-springs after crossover and mutation operations. Compute the fitness score of the two 
off-springs using Eq. (6) (when, > ) or Eq. (7) (when, < ) and check their fitness scores 
with the least fitted chromosome (i.e., having least fitness) in the populace. Select such 
chromosome to be the part of the populace having better fitness. 

Step 4: Repeat, Step 3 until any one of the following is not met: (a) no improvement in the population 
for specified  iterations or (b) total  number of generations has been produced. 

 
 

4. Experiments and Results 

In this section, we present the implementation details, data sets, results, and discussion over obtained 
results for the algorithms proposed in Section 3. 

Greedy and GA based algorithms presented in the previous section had been implemented in Python 
besides the Gale-Shapley algorithm. Various experiments had been conducted to test and analyze the 
performance of the implemented algorithms. These experiments were conducted over the dataset 
created by crawling user’s (men and women) profiles and expectations from matrimonial websites. 
Although the objective is to maximize the profit of a single matrimonial website, we crawled the users’ 
profiles and expectations from various matrimonial websites to perform the experiments over a wide 
and diversified dataset of mixed group. 

 
4.1 Dataset 
 

As discussed earlier, we created a dataset of a mixed group of user’s profile and expectations. This 
included the profiles of educated/uneducated individuals, long/medium/short height users, employed/ 
unemployed/self-employed persons, etc. It also included the mixed expectations in the partners’ (of 
opposite gender) profile, viz. looking for educated/uneducated partner, high/moderate salary, 
vegetarian/non-vegetarian, etc. To maintain such diversity in the experimental dataset, we crawled the 
user’s profile and their expectations from two matrimonial websites, viz. www.jeevansathi.com, 
www.bharatmatrimony.com. In total, details (profile and expectations) of 1000 men and 1000 women 
were crawled from these websites. Crawling from different sources resulted in different format/ 
structure of data and unequal set of features (viz. religion, height, salary, etc.) in individuals profile and 
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expectations. Therefore restructuring or cleaning of the crawled data from different sources had been 
done. We considered only such features (either in profile or in expectations) which were common in all 
data sources. In total five features had been used after the restructuring or cleaning process. 

Further, we stored these restructured data into four matrices as follows:  (profile of men),  
(expectations of men in his partner’s profile),  (profile of women), and  (expectations of women 
in her partner’s profile). Here, ( , ) stores the numeric value scaled between -1 and 5 representing 
the presence (scaled between 0 and 5) / not presented (scaled to –1) of the  feature in the profile of 
the  man. For example, let, = 2 represents a feature salary, then (1, 2) = 	0 is the representation 
of very bad earnings for the man, (1), whereas (2, 2) = 	5 is the representation of very good 
earnings for the man, (2), and (3, 2) = 	−1 represents the unavailable or undisclosed information 
about the salary of (3) at the matrimonial website. Similarly, ( , ) represents the presence of the 

 feature in the profile of the  woman. Further, ( , ) stores the numeric value (scaled between 0 
and 5) for the  expected feature by  in his partner’s profile. Here, (1, 2) = 4 suggests that (1) 
is expecting a partner whose income/earning is good. Similarly, ( , ) stores the numeric value for 
the  expected feature by  in her partner’s profile. 

Matrices discussed in previous steps had been used to create the weighted preferences, MWP and 
WWP as follows: 

 ( , ) = 
∑ ( )× ( , ),	 ( , )

 × 100                                   (8) 
 

where,  and  are the  and  man and woman respectively;  is the count of features;  is the count 
of expected features (or expectations) for the  man in his partner’s profile, i.e.  is the count for which ( , ) ≥ 0;  is the distance function and returns 1 if, ( , ) ≤ ( , ), where, ( , ) ≠ −1, 
else returns the Euclidean distance between ( , ) and ( , ) scaled between 0 and 1. Further, ( ) 
is the weight (between 0 and 1) associated with each feature such that ∑ ( ) is 1. 

 ( , ) = 
∑ ( )× ( , ),	 ( , )

 × 100                                   (9) 
 
Here, the distance function  returns 1, if ( , ) ≤ ( , ), where ( , ) ≠ −1, otherwise 

returns Euclidian distance between ( , ) and ( , ) scaled between 0 and 1. 
While computing MWP and WWP, we had considered fixed weight, ( ) for each feature.  However, 

it can be tuned in future for further observations in the performance of proposed algorithms. Further, 
in context of the Indian subcontinent where inter-religion marriage is usually not in practice, we 
marked the weighted matching between  man and  woman, i.e. ( , ) as 0 irrespective of the 
matching of other features, if any one of the two did not prefer inter-religion marriage. Similarly, under 
such circumstances, we made ( , ) as 0. Finally, CWP was calculated by taking the mean of MWP 
and WWP. 

 
4.2 Results and Discussion 
 

In this section, we one by one present the results and other details for the algorithms proposed in 
Section 3. Performance of the proposed algorithms had been evaluated in terms of the achieved 
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MAWM (computed using Eq. (4)) over the CWP created in Section 4.1. Let us call this CWP as CWP . 
We run the Greedy based algorithm once, whereas, each of the GA based algorithms was run  times 
(10 runs) to observe the variations in the achieved MAWM. Each run of the GA based algorithms 
involved following in-order: population set having 50 chromosomes; computation of the fitness scores 
of the chromosomes using the CWP created in Section 4.1; and 10,000 iterations of selection, crossover 
and mutation operations to generate the offsprings. 

The performance of the Greedy based approach presented in Algorithm 1 had been tested over the 
CWP created in Section 4.1, i.e. CWP  (having weighted matching of 1000 men and 1000 women). We 
ran the algorithm once and successfully identified 1000 unique pairings of men and women. In the 
single run of Algorithm 1, the achieved MAWM was 43.64. 

Further, the CWP created in Section 4.1 had been used to compute the fitness scores of the 
chromosomes in each of the 10 runs for Algorithm 2.1. Each run started with random selection of two 
chromosomes from the initial population to generate the first off-spring, i.e. in total 20 chromosomes 
had been selected for this purpose. Out of 20 initially selected chromosomes, the highest fitness score 
was 43.07, whereas the mean±standard deviation of the initially selected 20 chromosomes was 
42.62±0.3. Further, in each run we successfully identified the 1000 unique pairings of men and women. 
Out of 10 MAWMs (one MAWM per run), the best achieved MAWM was 62.71, whereas the 
mean±standard deviation of the achieved MAWMs was 62.44±0.37. 

A similar experimental procedure had been used to evaluate the performance of Algorithm 2.2. Here, 
we created another CWP (let us call, CWP ) by randomly removing 200 women from the CWP created 
in Section 4.1, i.e. CWP  involved 1000 men and 800 women. CWP  had been used to compute the 
fitness score of the chromosomes in each of the 10 runs of the Algorithm 2.2. The highest fitness score 
out of the 20 initially selected chromosomes, their mean±standard deviation, out of the 10 runs the best 
achieved MAWM and its mean±standard deviation have been shown in Table 1. We also conducted the 
experiments to observe the performance of the Algorithm 2.2 under the scenario < . These 
experiments had been conducted over the CWP created by randomly removing 200 men from the CWP 
created in Section 4.1. Let us call this CWP as CWP . Table 1 also depicts various observations (viz. best 
achieved MAWM out of 10 runs and its mean±standard deviation, etc.) related to the conducted 
experiments under this scenario. 

Next set of experiments had been conducted to evaluate the performance of Algorithm 3 under the 
scenarios, = , > , and <  using CWP , CWP , and CWP , respectively. Unlike Algorithm 2, 
here initial populations were created with 50 chromosomes, where one of the chromosomes was 
generated in the guided manner. The highest fitness score out of the 10 chromosomes generated in the 
guided manner for 10 runs of the Algorithm 3.1, their mean±standard deviation, out of the 10 runs the 
best achieved MAWM and its mean±standard deviation have been shown in Table 1. Similar 
observational details related with 10 runs of Algorithm 3.2 (when > ) and 10 runs of Algorithm 3.2 
(when < ) have been presented in Table 1. 

Lastly, we conducted the experiments to evaluate the performance of the Gale-Shapley algorithm over 
same data set, i.e. MWP and WWP which had been used to create CWP . Here, men preference list was 
created for each man by replacing highest weighted matching in the MWP as preference 1 (i.e. most 
preferred woman for that man), second highest weighted matching as preference 2 and so on. Similarly, 
we identified the women preference list for each woman. 
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Table 1. Performance details of various algorithms 

Algorithm 
Count of 
man ( ), 

woman ( )

FS of the guided chromosome (used for Algorithm 3) 
or first selected chromosome (used for Algorithm 2)

in the initial population of 50 chromosomes 
MAWM 

Mean± ⁄   
for =  runs Best FS of the chromosome 

(guided/first selected) 
 out of =  runs 

Mean± ⁄  
for =  runs 

1 ( = ) 1000, 1000 NA NA 43.64 NA 
2.1 ( = ) 1000, 1000 43.07 42.62±0.31 62.73 62.45±0.38 
2.2 (when > ) 1000, 800 41.54 41.10±0.49 63.85 63.15±0.43 
2.2 (when < ) 800, 1000 42.25 41.13±0.84 68.32 67.91±0.28 
3.1 ( = ) 1000, 1000 70.70 70.23±0.28 72.93 72.81±0.10 
3.2 (when > ) 1000, 800 71.12 70.97±0.11 73.66 73.38±0.19 
3.2 (when < ) 800, 1000 73.41 73.32±0.10 79.81 79.55±0.18 
Gale-Shapley ( = ) 1000, 1000 NA NA 35.58 NA 

Each GA based algorithm had been run ten times (i.e., = 10) and each run involved 10000 iterations, i.e., = 10000. 
FS=fitness score, NA=not applicable. 

 
Further, these preference lists (preferences of 1000 men for 1000 women and vice versa) were given as 

inputs to the Gale-Shapley algorithm. The Gale-Shapley algorithm too successfully identified the unique 
pairing of each man with a woman. The weighted matchings against these pairs had been averaged out 
to compute the MAWM. The achieved MAWM by Gale-Shapley algorithm was 35.58. 

Table 1 consolidates the MAWM achieved by the algorithms presented in this paper including the Gale-
Shapley algorithm. As seen in Table 1, out of the four algorithms (including Gale and Shapley) applicable 
for the scenario, where = , Algorithm 3.1 (i.e. GA based approach with a guided population) had 
shown the best performance to maximize the profit of matrimonial websites in terms of achieved MAWM. 
One of the reasons behind this might be the guided chromosome in the initial population which ensured 
that the global/final fitness score of a chromosome is never less than the fitness score of the guided 
chromosome. Further, as seen from the Table 1, variations (standard deviation) in the achieved MAWM is 
negligible for all the 10 runs of each of the GA based algorithm, where = . 

Similarly, as seen in Table 1, Algorithm 3.2 performed better than Algorithm 2.2 under the scenario, 
where < . Both algorithms utilized the capability of GA, however, the reason behind the better 
performance of Algorithm 3.2 might be the guided chromosome in the initial population. Finally, the 
same reason might be applicable for the better performance of Algorithm 3.2 than Algorithm 2.2 for the 
scenario, where > . Further, 10 runs of these algorithms had shown little variations (standard 
deviations) in the achieved MAWM. 

In each of the conducted experiment for Algorithm 2 (randomly generated chromosomes), 
significant improvement has been observed in the fitness scores of the initially selected chromosome 
and the best chromosome after 10000 iterations of an experiment. Mean of the 10 fitness scores of the 
initially selected chromosomes corresponding to the 10 experiments conducted for Algorithm 2.1 is 
42.62±0.31. This mean is improved significantly to 62.45±0.38 for the best chromosome after 10000 
iterations of each experiment. It is evident from Table 1 that significant improvement has been 
observed for Algorithm 2.2 (when, > ) and Algorithm 2.2 (when, < ). Further, mean of the 10 
fitness scores of the guided chromosomes corresponding to the 10 experiments conducted for 
Algorithm 3.1 is 70.23±0.28. This mean is improved significantly to 72.81±0.1 for the best chromosome 
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after 10000 iterations of each experiment. Similar improvements have been observed in the experiments 
conducted for Algorithm 3.2 (when, > ) and Algorithm 3.2 (when, < ). 

 
 

5. Conclusion 

In this paper we presented a new perspective to SMP in profit maximization of matrimonial websites. 
Instead of qualitative preference list, we defined the quantitative/weighted preferences computed using 
profile (personal details) and expectations (in partner of opposite gender) of the users registered on 
matrimonial websites. The objective of all the algorithms presented in this paper was to make such 
pairs/matching of men and women which maximizes the profit (in terms of MAWM) of matrimonial 
websites. Greedy and Genetic algorithm based algorithms have been proposed in this paper to solve the 
problem in different scenarios, viz. (a)  (count of men)  =  (count of women); (b) > ; and (c) < . As discussed in Section 4, the set of algorithms (Algorithm 3) outperformed other algorithms 
(viz. Greedy based, and GA based where chromosomes are randomly generated) including Gale-
Shapley algorithm under the scenario where, = . 

As the future extension, the new perspective presented in this paper may also be applied to some 
other applications of bipartite matching viz. student project allocation, hospital resident problem, etc. 
As discussed in Section 4, another extension of current work is to train/tune the weights associated with 
the features for further observations. 
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