

www.kips.or.kr Copyright© 2018 KIPS

A Solution towards Eliminating Transaction
Malleability in Bitcoin

Ubaidullah Rajput*, Fizza Abbas*, and Heekuck Oh**

Abstract
Bitcoin is a decentralized crypto-currency, which is based on the peer-to-peer network, and was introduced
by Satoshi Nakamoto in 2008. Bitcoin transactions are written by using a scripting language. The hash value
of a transaction’s script is used to identify the transaction over the network. In February 2014, a Bitcoin
exchange company, Mt. Gox, claimed that they had lost hundreds of millions US dollars worth of Bitcoins in
an attack known as transaction malleability. Although known about since 2011, this was the first known
attack that resulted in a company loosing multi-millions of US dollars in Bitcoins. Our reason for writing this
paper is to understand Bitcoin transaction malleability and to propose an efficient solution. Our solution is a
softfork (i.e., it can be gradually implemented). Towards the end of the paper we present a detailed analysis of
our scheme with respect to various transaction malleability-based attack scenarios to show that our simple
solution can prevent future incidents involving transaction malleability from occurring. We compare our
scheme with existing approaches and present an analysis regarding the computational cost and storage
requirements of our proposed solution, which shows the feasibility of our proposed scheme.

Keywords
Crypto-currency, Bitcoin, Transaction Malleability

1. Introduction

After its introduction in 2008 by Satoshi Nakamoto, the Bitcoin crypto-currency has gained
significant popularity amongst other various crypto-currencies. It is a decentralized currency that
utilizes cryptography to validate itself [1]. Bitcoin is a peer-to-peer network. A Bitcoin transaction is a
signed piece of data written in a scripting language that governs the transfer of Bitcoins from one party
to another. After a transaction is created, it is relayed to the network and collected by verifiers, who are
known as “miners.” The job of the miners is to verify a transaction. They collect a number of
transactions that are broadcast over the network over a period of time and put them together in a block.
Upon verification, the block containing these transactions is added to an online public ledger known as
Blockchain. If the transaction is not verified it is rejected by the miners [2,3]. Blockchain is a publically
available ledger that consists of all the transactions ever made in the Bitcoin crypto-currency system.
Blockchain is made of blocks that are verified by the miners. This mechanism is the basis for preventing

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received September 15, 2015; accepted January 19, 2016.
Corresponding Author: Heekuck Oh (hkoh@hanyang.ac.kr)
* Dept. of Computer Systems Engineering, Quaid-e-Awam UEST, Nawabshah, Pakistan ({ubaidullah, fizza_alvi}@quest.edu.pk)
** Dept. of Computer Science and Engineering, Hanyang University (ERICA campus), Ansan, Korea (hkoh@hanyang.ac.kr)

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.03.0101 ISSN 2092-805X (Electronic)

A Solution towards Eliminating Transaction Malleability in Bitcoin

838 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

double spending in Bitcoins.
Moreover, no government or centralized authority governs Bitcoin. Instead, it is a completely

distributed network. One of the major questions in the world of crypto-currencies is: “Who creates the
money at first?” In Bitcoin, the miners, who verify the Bitcoin transactions, get the newly generated
Bitcoins. These Bitcoins serve as a reward for their efforts they put in by spending computing resources
during block verification. Currently this reward is set to 25 Bitcoins [4, 5]. Every 4 years this reward is
cut in half. This procedure of cutting rewards in half will continue until the total Bitcoins issued reaches
21 million. At that point, the generation of new Bitcoins will be capped and miners will only get
transaction fees for their verification efforts.

A Bitcoin exchange is a company that deals in the currency exchange of Bitcoins with other
currencies, like the US dollar. One such company, Mt. Gox, claimed in February 2014 that they were hit
by a bug known to exist in Bitcoin called transaction malleability [6,7]. Mt. Gox claimed to lose
hundreds of millions of dollars worth of Bitcoins due to this transaction malleability-based attack.
However, later they claimed to recover some of them. A similar incident occurred at another Bitcoin-
based online market place known as Silk Road 2. The online black market was famous for its dealing in
prohibited items, such as drugs, etc. The owners of Silk Road 2 also claimed to have lost their Bitcoins
[7,8]. The victims claimed that this was due to the transaction malleability bug in the Bitcoin system
itself and put the blame on the design of the crypto-currency. The Bitcoin developers argued that this
bug was known since 2011 and that the software at Mt. Gox was not developed properly to handle such
attacks [9].

At the time of this writing, 361,290 blocks have been generated, verified, and added to Blockchain. A
hardfork [10] (i.e., a major change that makes previously processed blocks invalid) might not be
welcome. Transaction malleability, on the other hand, is a weakness of the system and a solution to this
problem could eliminate future attacks from exploiting this weakness. The contributions of this paper
are given below.

• First, we thoroughly investigate transaction malleability (i.e., how such an attack is possible) by
providing a complete understanding of Bitcoin transactions.

• Second, we propose a solution that is a softfork change [11].
• We also provide the proof of concept that our softfork solution eliminates transaction malleability

without any (or little) additional cost.

This work is ongoing research on this issue. Our earlier effort was accepted in [12]. In this paper we
are extending [12] by digging more deeply into the transaction malleability issue and we analyze our
solution in more detail to show that it is practical enough to be used.

The rest of the paper is organized as follows: Section 2 outlines the related work and Section 3
outlines the Bitcoin systems, the concept of transactions, and Blockchain. We describe transaction
malleability in detail in Section 4 followed by our proposed solution in Section 5. In Section 6, we
provide a detailed analysis of our proposed protocol. In Section 7, we give our concluding remarks.

2. Related Work

Transaction malleability has been known about since around 2011 [13] but has been largely treated as
a minor inconvenience [14]. Not only has transaction malleability been used to steal Bitcoins but before

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 839

that it was also used as a DDoS attack where attackers used transaction malleability to launch the DDoS
attack in order to temporarily disrupt the balance-checking services of BitStamp, which handled the
world’s biggest volume of Bitcoin trading [15]. Wuille [16] proposed a Bitcoin Improvement Proposal
(BIP) called bip-0062. In this BIP, he mentioned several sources of transaction malleability, such as
Non-DER encoded ECDSA signatures, non-push operations in scriptSig, and inherent ECDSA
signature malleability (just to name a few). The author of bip-0062 proposed new rules to eliminate
transaction malleability. These rules enforce procedures that should be adopted in order to eliminate
the above-mentioned sources of transaction malleability. Most of these rules apply to version 3 blocks.
The problem with this solution is that it proposes a hardfork change that would make version 2 blocks
entirely invalid when 95% of the past 1,000 blocks are version 3 or higher. Andrychowicz and
Dziembowski [17,18] presented a solution for transaction malleability by eliminating the parts of the
transaction that can cause malleability. They presented their approach for Bitcoin contracts. They
proposed removing an important script from the transaction when the hash (transaction ID) is
computed. The drawback of their approach is the removal of this important information that is signed
by the owner. Decker and Wattenhofer [19] presented transaction malleability and the Mt. Gox issue.
They analyzed various transactions in Blockchain to identify double spending attempts and tried to
investigate if the attackers used malleability before the Mt. Gox incident. The authors only presented a
case study and did not present a solution. The approaches in [20,21] studied the attacks based on
double spending and transaction malleability. As we mentioned earlier, at the time of this writing,
almost 361,290 blocks have been processed and added to Blockchain. A change in the protocol, such as
presented in [16,18], might not be accepted broadly by the system participants due to its hardfork
nature.

3. Bitcoin Basics

In this section we discuss the basics of Bitcoin to understand how transactions work in Bitcoin.

3.1 Transactions

Bitcoin transactions are signed scripts that are broadcast on the network [22]. A transaction mentions
the transfer of funds from one Bitcoin address to another. A Bitcoin address is actually a hash of a
public key. A client installs Bitcoin wallet software and generates an elliptic curve digital signature
algorithm (ECDSA) public/private key pair. The public key is then hashed and serves as the address
Bitcoins are transferred from/to. A transaction is written in Bitcoin scripting language. A transaction
can be divided into two segments. One is the input that mentions the source of Bitcoins that are to be
spent. It is specifically a reference to the output in some other transaction. There can be more than one
input in a transaction mentioning unspent outputs in some other transaction(s). The total input value
describes the sum of Bitcoins that are to be transferred. This input section also contains the hashes of
those other transactions as a reference. One of the most important fields it contains is the scriptSig. The
scriptSig contains some signed information along with the public key so that miners can verify the
signature on the script. Along with the signature and the associated public key (the hash of which is
mentioned in the output of previous transactions) the creator of this transaction proves their ownership

A Solution towards Eliminating Transaction Malleability in Bitcoin

840 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

of the Bitcoin address containing the Bitcoins that are being spent. One noticeable thing is that all the
Bitcoins mentioned in the input section must be spent (including the fees to the miners). Therefore, if
the total number of Bitcoins contained in these referenced inputs is 100 Bitcoins and the redeemer
wants to spend 75 Bitcoins then he/she needs to mention another output in his/her transaction, which
contains his/her own address. This address serves to collect the change of 25 Bitcoins. The output
segment, on the other hand, mentions the number of outputs carried by this transaction. For example,
if the total number of Bitcoins is to be sent to two addresses then this field will be set to a value of 2. The
output also contains the total number of Bitcoins needed to be sent, including the transaction fees, to
the miners. The most important field in the output segment is the scriptPubKey, which is the other part
of the script. It contains the destination address where the Bitcoins are to be sent, along with the
instructions (script) that specify the conditions that must be fulfilled by the receiver in order to redeem
this transaction. Upon receiving the transaction, the miners will execute this script to verify the
transaction. Fig. 1 shows a typical transaction script denoted as the Tx_script. Note that the scriptSig
field in the Tx_script is first temporarily filled with the scriptPubKey of the transaction whose output is
to be redeemed. This scriptPubKey provides important information. For example, it mentions the
conditions that were fulfilled in order to redeem the Bitcoins now contained in the previous
transaction. This is particularly important in more advanced transactions, such as Bitcoin contracts.
After the writing of this transaction is completed, the hash is taken and signed as shown below:

Sig_data = (h(Tx_script))SK + hash_type

where, h(.) represents a one-way hash function, such as SHA-256, and hash_type is SIGHASH_ALL (a
Bitcoin scripting word that means to calculate the signature on all of the script). This information is
then signed by the owner’s private key (SK).

Fig. 1. A typical Bitcoin transaction script.

Note that some of the terms, such as Tx_script, in the above and subsequent equations are not

necessarily a standard representation but are used in this paper in the attempt to provide a better
understanding of the concept.

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 841

The Bitcoin address that contains the unspent Bitcoins is the hash of the corresponding public key of
this private key. Finally the scripSig field is constructed as:

scriptSig = len(Sig_data) + Sig_data + len(pubkey) + pubkey

where, len denotes the length of the corresponding field in bytes and Sig_data is an ECDSA signature
pair (r,s).

Note that these values in scriptSig are not signed, as it is unfeasible for a signature to sign itself. The
final transaction is almost the same as Tx_script except that the scriptSig field is replaced by the newly
created scriptSig value. The final transaction (Final_Tx) is shown in Fig. 2. Before relaying it to the
network, a hash is computed over Final_Tx and serves as the transaction’s unique identity (tx_id), as
shown below:

tx_id = h (Final_Tx)

Note that this tx_id is used to search a particular transaction in the Blockchain. As we will see later in

our paper, this tx_id plays a significant role in transaction malleability.

3.2 Blockchain

Bitcoin uses a database, known as Blockchain, for keeping record of all transactions. Blockchain
contains every transaction that is ever executed in Bitcoin. With the help of this information, anyone
can check about how many Bitcoins were associated with an address at any point in the past [23].
Blockchain is indeed a chain of the blocks containing transactions. Each block contains the hash value
of the previous block. This chain is continued from the very first block, which is known as the genesis
block. The hash values guarantee that this block is generated after the previous block. It is interesting to
note that it is very difficult to modify a block after it has been verified. This is because after a while,
there will be more verified blocks and if someone tries to change the block then he/she also needs to
change the subsequent blocks as well.

A block is verified with the concept of the proof of work. A miner who is verifying a block containing
transactions will need to verify all of the transactions. Besides this, the miner also requires to solve a
mathematical challenge termed as proof of work. This mathematical challenge has been made to be
difficult enough so that it requires some computing effort in order to be solved. The Bitcoin network
provides miners with a challenge in order to find the proof so that when they take the hash of the puzzle
it should result in a hash with certain number of leading zeros. The challenge is composed of the hash of
the transactions (contained in the block), the previous hash of the block, and some nonce. In case of not
finding the particular hash, miners increment the nonce and try again until they find the required
number of leading zeros. The Bitcoin network continuously monitors the average time it takes for the
miners to find this proof. On average, the time to solve the challenge should be around 10 minutes. As
the mining hardware is becoming more and more sophisticated every day, this challenge needs to be
made harder. For example, if the required number of zeros is 40 then on the average it requires 240 = 1
trillion hashes to be checked in order to find one such hash. If the Bitcoin network detects that the
challenge being solved is taking less than 10 minutes on average then the difficulty of the challenge is
increased by increasing the leading zero condition by one more bit, say 241, which equals 2 trillion

A Solution towards Eliminating Transaction Malleability in Bitcoin

842 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

attempts on average to produce one required hash. This proof of work guarantees that if an attacker
tries to insert a fake block (or a block containing a double spending transaction) then it needs to catch
this proof of work with a computing power of 51% of the network’s nodes.

Fig. 2. Final transaction.

3.3 Mining and Miners

Miners are the nodes in the Bitcoin network who verify the blocks. Once a transaction is relayed
across the network, it is combined in the pool of unconfirmed transactions. Miners collect these
unconfirmed transactions in a block and start to verify it. Today, miners are equipped with specialized
mining hardware, such as FPGA or ASIC-based mining devices. It is worth mentioning that the proof
of work requires the calculation of hashes. These devices typically operate in speeds of Giga Hash
(Ghash). Once the solution to the challenge is found, the miner(s) relay(s) this solution across the
network. The other miners verify this solution. Once verified, this block is added to Blockchain and the
miners start working on the next block. The miner(s) who solves the block is/are rewarded with newly
generated Bitcoins, which are currently set to 25 Bitcoins. For doing so, the miners create a special
transaction known as a “coinbase” in which they send 25 Bitcoins to themselves.

3.4 Scripts

Bitcoin scripts play a fundamental role in Bitcoin transaction malleability. A Bitcoin script is
essentially a series of instructions in a transaction that are written to describe how the Bitcoins
containing in this transaction will be redeemed. A script governs the conditions that must be fulfilled by
the spender. A standard Bitcoin transaction requires the spender to provide two things: The public key
that hashes to the address that contains the Bitcoins to be spent, and the signature, which ensures that
the spender has the corresponding private key of the public key. The commands or functions in a script
are called script words and are stored on a stack upon execution. A transaction will be considered valid
if the top stack item returns true, otherwise it will not be a valid transaction. Certain words are used to
push byte data onto the stack. Some are used for flow control; some for bitwise logic operation;

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 843

arithmetic operations; some for crypto operations, such as taking the hash; and some for checking the
signature. Below is the standard transaction script that is used to transfer Bitcoins to a public key hash
address.

scriptPubKey: OP_DUP + OP_HASH160 + <pubKeyHash> + OP_EQUALVERIFY

+OP_CHECKSIG
scriptSig: <sig> < pubkey>

The above script typically means to duplicate the top item of the stack (public key), take its hash

(pubkey hash), compare it with the pubKeyHash, which is also presented in the script, and verify it. On
returning true, the script is considered to be validated. scriptSig contains the signature and the public
key. Another important thing related to words is their representation in hex codes in a raw transaction.
For example, 76 is the hex code for OP_DUP, A9 is the hex code for HASH160, and so on. The “raw
transaction API” was developed to give developers or very sophisticated end users access to creating
and broadcasting transactions. Thus, it allows a company to create its own software according to its
need to exchange Bitcoins. More precisely, it gives them the freedom to exchange Bitcoins in the way
their business operates. Finally, a transaction is identified by its hash, which is a very important
characteristic of Bitcoin protocol. Once a raw transaction is written and dispatched over the network, it
will be identified in Blockchain by its hash. Therefore, once a complete transaction is written,
mentioning all the inputs, outputs, scriptSig, scriptPubKey, etc., the hash of this final transaction serves
as the transaction ID.

4. Transaction Malleability

In this section we explain transaction malleability and how it works. This bug was already present in
the system and first identified around 2011 [9]. Until recently it was not considered to be a very serious
issue. In this section we describe two of the incidents that involved transaction malleability.

Mt. Gox was a Tokyo-based Bitcoin exchange. It was established in 2010 and by February 2014, it
accounted for almost 70% of all Bitcoins ever traded [19]. In February 2014, this company suspended its
trading, closed its website, and filed for bankruptcy protection [24]. As it was working as a Bitcoin
exchange, people used to deposit other currencies like US dollars in exchange for Bitcoins. The
attackers launched a transaction malleability attack by requesting a transfer of Bitcoins from Mt. Gox
and then intercepting and replacing that transaction with a modified one with a different hash. Because
the modified transaction still contained all of the valid addresses and the public key address, the
network verified it and the Bitcoins were transferred to the attacker’s account. On the other hand,
because its ID had been changed, the attacker complained to the company that he/she had not received
the intended Bitcoins and the company re-sent the Bitcoins. Mt. Gox later announced that they were
affected by this bug in Bitcoin software and lost around 850,000 Bitcoins. However, later they said that
they recovered some of them. Their total loss was more than 450 million US dollars. Bitcoin developers
said this was a known bug and Mt. Gox had to have exchange transaction software that was in
accordance with this bug. Another Bitcoin trading place, Silk Road 2, who lost over 4,000 Bitcoins that
were valued at approximately 2.7 million US dollars, reported a similar case.

A Solution towards Eliminating Transaction Malleability in Bitcoin

844 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

4.1 Types of Transaction Malleability

We know that when the hash of some data is produced, then even a slight change results in a
completely different hash. As mentioned earlier, the hash of the final transaction serves as the
transaction ID. If someone is able to change some of the details in the transaction, the resultant hash
will be completely different. Thus, we can define transaction malleability as an attack in which an
attacker can change the unique transaction ID by manipulating the transaction, which results in a
different hash while all the other details of the transaction remain the same. This particularly means
that the miners will verify the transaction. This leads to the question of: “What can an attacker change
in a signed and hashed transaction?” A transaction includes components like the receiver’s address,
amount, inputs, etc. To protect this data, the hash of a certain part is calculated and signed. This signed
information is kept in scriptSig as a part of the final transaction. Note that this signature is calculated
over only a part of the transaction and the complete final transaction is not signed. That is, the scriptSig
does not sign itself, as it is unfeasible for a signature to sign itself. This introduces two ways of inducing
malleability [25], as described below.

4.1.1 Signature malleability

The first type of malleability is related to the signature. Bitcoin uses an ECDSA signature. For every
ECDSA signature (r, s(modN)), the signature (r, −s(modN)) is also a valid signature of the same
message. Therefore, if an attacker intercepts the transaction and changes the sign of s in the signature
pair (this modification is possible due to the fact that the signature is not signed) then, the resultant
hash (the transaction ID) will be completely different. Second, each signature has only one DER
encoded ASN.1 octet representation. However openssl, which is used in the Bitcoin network, does not
enforce it unless the signature is too ill formed [25]. This means that if an attacker pads the signature
with 0x00... or 0xFF.... then the signature will be accepted and the resulting modified transaction will
contain a completely different hash.

4.1.2 Script malleability

Script malleability is related to script words. We know that scriptSig is not signed in a transaction.
This allows an attacker to add certain script words, such as OP_DROP, to the scripts. OP_DROP simply
leaves the stack as before, and, therefore, its use will not affect the execution of a script. This addition in
a transaction script will result in a completely different hash and a different transaction ID. There is
another way of adding or changing op codes. As script words are represented with op codes in hex
format, one can change the op codes in such a way that two different op codes (script words) work in a
similar manner. For example, PUSHDATA 48 means push two bytes of data and OP_PUSHDATA2
means the next two bytes. Because these two different op codes are doing exactly the same thing, it will
not change the functionality of the transaction. However, two transactions with different op codes will
have completely different hashes (or transaction IDs).

This is what happened to Mt. Gox [19]. Although the expected transaction IDs of their transactions
were not appearing in Blockchain, they were being executed and their clients (the attackers) were
getting Bitcoins. The attackers were claiming that they were actually not receiving Bitcoins and Mt. Gox
software was resending payments. By the time they knew what had happened, it was already too late.

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 845

5. Proposed Solution

This section provides our proposed solution, the structure of our proposed transaction ID, and the
proof of the concept.

5.1 Proposed Transaction ID

A hash has a fixed length. Therefore, all of the transactions, whether they are unmodified or malleable
transactions, have the same size hash. The transaction ID serves as a reference in a subsequent
transaction that tries to redeem the unspent Bitcoins in it. Therefore, the modification or removal of this
information from the transaction script will be a hardfork and will need a major change in protocol.
Thus, it is desirable to keep the current structure of the transaction script. The idea of our solution is to
use the hash of the transaction on which the signature is calculated (i.e., h(Tx_script)). That means, we
aim to use the hash that is calculated without the input script (i.e. scriptSig). Note that the values of this
hash cannot be modified and any change to scriptSig in Final_Tx will not modify this hash. We propose
that this hash should be appended with the hash of the final transaction to be used as the transaction ID.
We refer to this as hashnew. Our proposed format for the transaction ID will look like hashprev || hashnew,
which is shown in Fig. 3, where hashprev = h(Final_Tx), which serves as the transaction ID in the current
protocol. By doing so, we are only slightly modifying the current protocol for only the identification
requirement of the transaction. In other words, because our new transaction ID has two fixed length
segments, miners will always take the first part of the transaction (i.e., hashprev) to verify it as they did
before. During the transaction verification procedure, the miners will validate the transaction in a way that
similar to the existing protocol. This includes the validation of hashnew during the signature verification.

Fig. 3. The new structure of transaction ID.

1. Each of the transactions that are referencing the unspent outputs of this transaction will keep

referencing the transaction with hashprev. Even if the hashprev is modified, it will cause no harm
and will continue to serve as the transaction reference in subsequent transactions that are
referencing it.

2. A sender, who tries to find his/her transaction in Blockchain, will look for the hashnew and will
eventually find it. Thus, it solves the problem of the sender who is not finding his/her
transaction in Blockchain. Furthermore, the sender will also be able to detect any malleability
attempt as he/she will find the corresponding hashprev.

 We will further demonstrate our approach in the security analysis section.

A Solution towards Eliminating Transaction Malleability in Bitcoin

846 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

5.2 Proof of the Concept

In this section we provide the proof of the concept of our scheme.

Lemma 1. If an attacker successfully changes hashnew in the proposed transaction ID.
Proof. As mentioned in our proposed transaction ID:

 hashnew = h(Tx_script)
Let’s suppose an attacker changes the Tx_script in order to modify h(Tx_script),

hashnew’ = h(Tx_script’)

Fig. 4. Showing attempt of modification of hashnew.

But we know that Final_Tx contains the signature pair (r,s) that is calculated on h(Tx_script) so,

 hashnew’ ≠ hashnew
Therefore, the transaction will be invalidated, as shown in Fig. 4.

Lemma 2. If an attacker successfully changes hashprev in the proposed transaction ID.
Proof. As mentioned in our proposed transaction ID:

hashprev = h(Final_Tx)

Let’s suppose an attacker changes the Final_Tx in order to modify h(Final_Tx) with the help of

transaction malleability, as explained in Sections 4.1 and 4.2.
hashprev’ = h(Final_Tx’)

But we know that a change in the Final_Tx does not affect the functionality of a transaction.

Moreover, once verified, hashprev’ || hashnew is searchable by the sender.
Therefore, a changed hashprev’ is detectable, as shown in Fig. 5.

Fig. 5. Showing attempt of modification of hashprev.

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 847

6. Analysis

In this section we provide a comparison with existing work, as well as the communication and
computational overhead of our proposed scheme.

6.1 Comparison with Current Approaches

Recently, Wuille [16] proposed a BIP known as bip-0062 that states several sources of transaction
malleability to make scriptSig malleable. They also proposed new rules to eliminate transaction
malleability. However, most of these rules apply to version 3 blocks, which means that the hardfork
nature of their solution is clearly a drawback.

Another solution proposed by Andrychowicz and Dziembowski [17,18] is based on a solution that
involves removing input scripts, which contain information about how a previous transaction was
redeemed, from the transaction when the hash (transaction ID) is computed. The drawback of their
approach is the removal of the important information that is signed by the owner.

Compared to these schemes, it is evident that our solution preserves the important information
contained by scriptSig in Tx_script and does not require a hardfork change in the current protocol.
Table 1 shows a comparison with other current approaches.

Table 1. Comparison with current approaches

Parameter Wuille [16]
Andrychowicz and Dziembowski

[17,18]
Proposed solution

Requires Hardfork Yes Yes No

Requires scriptSig removal No Yes No

6.2 Computational, Communicational, and Storage Overhead

Lemma 3. In our proposed solution there are not any extra computational costs for miners in
verifying a transaction based on our proposed solution.
Proof. Since the miners already verify Tx_script by removing the scriptSig from Final_Tx, they

automatically verify hashnew. This is the most promising feature of our proposed approach that does not
require any extra effort by miners in verifying the new transaction ID.

Lemma 4. The proposed solution only requires 256 additional bits to be communicated over the

network and stored in Blockchain.
Proof. hashnew is the only extra addition in our protocol. A SHA-256 hash is 256 bits. This will be

appended with the hash of the final transaction before transmission. Similarly, in Blockchain, each
transaction will now be identified by not only the hashprev, which is currently being used, but also with
the 256-bit hashnew. We argue that this is a reasonable tradeoff as it eliminates the problem of
transaction malleability.

A Solution towards Eliminating Transaction Malleability in Bitcoin

848 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

7. Conclusions and Future Work

Transaction malleability has caused serious damage to the Bitcoin community in terms of the loss of
money and reputation. Not only were millions of dollars worth of Bitcoins stolen, but also the value of
Bitcoin has been declining since this issue. We have presented a thorough study related to Bitcoin
transactions and various attacks based on transaction malleability. We have proposed a robust
mechanism to cater to this issue. Our proposed solution is comprised of a transaction ID that is a
combination of the hash of the transaction script without the signature and the hash of the final
transaction. This combined hash serves for the purposes of both transaction verification and
identification. We analyzed our approach with respect to possible attacks presented in the proof of the
concept, as well as computational, communicational, and storage overhead, and we found that our
solution is feasible and detects any attempt of transaction malleability. Furthermore, it does not incur
computational overhead, while only a small amount of communicational and storage overhead is
required. We conclude that our approach is practical and in compliance with the existing Bitcoin
protocols. In the future, we aim to implement our protocol to evaluate it further with respect to various
overheads involved.

Acknowledgement

This work was supported by the Korea National Research Foundation (NRF) grant that is funded by
the Korean Ministry of Education, Science and Technology MEST (No. NRF-2015R1D1A1A09058200).

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2018-2014-1-00636) supervised by
the IITP (Institute for Information & communications Technology Promotion).

References

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,” 2008; https://bitcoin.org/bitcoin.pdf.
[2] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun, “Evaluating user privacy in

bitcoin,” in Financial Cryptography and Data Security. Heidelberg: Springer, 2013, pp. 34-51.
[3] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage, “A

fistful of bitcoins: characterizing payments among men with no names,” in Proceedings of the 13th
ACM Internet Measurement Conference, Barcelona, 2013, pp. 127-140.

[4] Bitcoin network data; http://www.coindesk.com/data/bitcoin/.
[5] How bitcoins mining works, http://www.coindesk.com/information/how-bitcoin-mining-works.
[6] Y. Takemoto and S. Knight, “Mt. Gox files for bankruptcy, hit with lawsuit,” 2014; http://www.

reuters.com/article/us-bitcoin-mtgox-bankruptcy-idUSBREA1R0FX20140228.
[7] A. Greenberg, “Silk Rod 2.0 ‘Hack’ blamed on bitcoin bug, all funds stolen,” 2014; http://www.

forbes.com/sites/andygreenberg/2014/02/13/silk-road-2-0-hacked-using-bitcoin-bug-all-its-funds-
stolen/#788200274a51.

[8] D. Bradbury, “Silk Road 2 loses over 2.33€ million in bitcoins in alleged hack,” 2014; http://www.
coindesk.com/silk-road-2-loses-bitcoins-hack.

Ubaidullah Rajput, Fizza Abbas, and Heekuck Oh

J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018 | 849

[9] Bitcoin Foundation, “Contrary to Mt. Gox’s statement, bitcoin is not at fault,” 2014; http://bitcoin
foundation.org/contrary-to-mt-goxs-statement-bitcoin-is-not-at-fault/.

[10] Hardfork definition, https://en.bitcoin.it/wiki/Hardfork.
[11] Softfork definition, https://en.bitcoin.it/wiki/Softfork.
[12] U. Rajput, F. Abbas, R. Hussain, H. Eun, and H. Oh, “A simple yet efficient approach to combat

transaction malleability in bitcoin,” in Information Security Applications. Cham: Springer International
Publishing, 2014, pp. 27-37.

[13] New attack vector, https://bitcointalk.org/index.php?topic=8392.msg122410#msg122410.
[14] K. Shirriff, “Bitcoin transaction malleability: looking at the bytes,” 2014; http://www.righto.com/2014/

02/bitcoin-transaction-malleability.html.
[15] M. J. Schwartz, “Bitcoin exchanges buckle under DDoS attack,” 2014; http://www.darkreading.com/

attacks-and-breaches/bitcoin-exchanges-buckle-under-ddos-attacks/d/d-id/1113809.
[16] P. Wuille, “Dealing with malleability,” 2014; https://github.com/bitcoin/bips/blob/master/bip-0062.

mediawiki.
[17] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Fair two-party computations via

bitcoin deposits,” in Financial Cryptography and Data Security. Heidelberg: Springer, 2014, pp. 105-
121.

[18] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “How to deal with malleability of
bitcoin transactions,” 2013; http://arxiv.org/pdf/1312.3230v1.pdf.

[19] C. Decker and R. Wattenhofer, “Bitcoin transaction malleability and MtGox,” in Computer Security –
ESORICS 2014. Cham: Springer International Publishing, 2014, pp. 313-32.

[20] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast payments in bitcoin,” in
Proceedings of the 2012 ACM Conference on Computer and Communications Security, Raleigh, NC,
2012, pp. 906-917.

[21] M. Rosenfeld, “Analysis of hashrate-based double-spending,” 2012; https://bitcoil.co.il/Doublespend.pdf.
[22] Transaction definition, https://en.bitcoin.it/wiki/Transactions.
[23] Bitcoin Block Explorer, https://blockchain.info.
[24] MtGox, “Notice of the results of approval or disapproval,” 2014; http://www.mtgox.com/pressrelease

20140210.html.
[25] Transaction malleability definition, https://en.bitcoin.it/wiki/Transaction_Malleability.

Ubaidullah Rajput https://orcid.org/0000-0002-3621-6458

He received his bachelor's degree in Computer System Engineering from Quaid-e-
Awam University of Engineering, Science and Technology (QUEST), Pakistan in
2005. He received his master's degree in Computer System Engineering from NUST
Islamabad, Pakistan in 2011. He successfully completed his Ph.D. in Computer
Engineering from Hanyang University, Korea in 2017. His research interests are
security and privacy issues in crypto-currency, security and privacy issues in
VANETS, Internet of Things (IoT), mobile social networks and cloud computing. He
has more than 12 years of teaching and research experience and currently working as
Assistant Professor in QUEST, Pakistan. He has served as a reviewer in many
conferences and journals. He is author of many international and national papers.

A Solution towards Eliminating Transaction Malleability in Bitcoin

850 | J Inf Process Syst, Vol.14, No.4, pp.837~850, August 2018

Fizza Abbas https://orcid.org/0000-0002-1346-335X

She received the bachelor's degree in computer system engineering from the Quaid-e-
Awam University of Engineering, Science and Technology (QUEST), Pakistan, in
2007, and the master's degree in communication system and networks from Mehran
University, Pakistan, in 2011. She successfully completed her Ph.D. in Computer
Engineering from Hanyang University, Korea in 2017. Her research interests are
security and privacy in social network services, mobile social networks, cloud
computing, mobile cloud computing, and vehicle ad hoc networks. She has more
than ten years of teaching experience and currently working as Assistant Professor in
QUEST, Pakistan. She has served as a reviewer in many conferences and journals. She
is author of many international and national papers.

Heekuck Oh https://orcid.org/0000-0002-2989-8737

He received his B.S. degree in Electronics Engineering from Hanyang University in
1983. He received his M.S. and Ph.D. degrees in Computer Science from Iowa State
University in 1989 and 1992, respectively. In 1994, he joined the faculty of the
Department of Computer Science and Engineering, Hanyang University, ERICA
campus, where he is currently a professor. His current research interests include
network and system security. Prof. Oh is President Emeritus of Korea Institute of
Information Security & Cryptology, and is a member of Advisory Committee for
Digital Investigation in Supreme Prosecutors' Office of the Republic of Korea. He is
also a member of Advisory Committee on Government Policy under Ministry of
Government Administration and Home Affairs. He is the corresponding author of
this paper.

