DOI QR코드

DOI QR Code

Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D

  • Haeri, Hadi (College of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (College of Architecture and Environment, Sichuan University) ;
  • Lazemi, Hossein Ali (Department of Mining Engineering, Bafgh Branch, Islamic Azad University)
  • 투고 : 2018.04.04
  • 심사 : 2018.06.07
  • 발행 : 2018.09.10

초록

In this paper, the effects of particle size and model scale of concrete has been investigated on the failure mechanism of PFC2D numerical models under uniaxial compressive test. For this purpose, rectangular models with same particle sizes and different model dimensions, i.e., $3mm{\times}6mm$, $6mm{\times}12mm$, $12mm{\times}24mm$, $25mm{\times}50mm$ and $54mm{\times}108mm$, were prepared. Also rectangular models with dimension of $54mm{\times}108mm$ and different particle sizes, i.e., 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were simulated using PFC2D and tested under uniaxial compressive test. Concurrent with uniaxial test, direct shear test was performed on the numerical models. Dimension of the models were $75{\times}100mm$. Two narrow bands of particles with dimension of $37.5mm{\times}20mm$ were removed from upper and lower of the model to supply the shear test condition. The particle sizes in the models were 0.47 mm, 0.57 mm, 0.67 mm and 0.77 mm. The result shows that failure pattern was affected by model scale and particle size. The uniaxial compressive strength and shear strength were increased by increasing the model scale and particle size.

키워드

참고문헌

  1. Al-Busaidi, A., Hazzard, J.F. and Young, R.P. (2005), "Distinct element modeling of hydraulically fractured lac du Bonnet granite", J. Geophys. Res., 110(B6), B06302.
  2. Aoki, K., Mito, Y., Mori, T., Morioka, H. and Maejima. (2004), "Evaluation of behavior of EDZ around rock cavern by AE measurement and DEM Simulation using bonded particle model", 327-333.
  3. ASTM (2002), "Standard test method for determination of the point load strength index of rock", Am. Soc. Test Mater., ASTM D 5731-02.
  4. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014), "Parametric study of smooth joint parameters on the shear behaviour of rock joints", Rock Mech. Rock Eng., 48(3), 923-940. https://doi.org/10.1007/s00603-014-0641-6
  5. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013a), "Numerical direct shear tests to model the shear behaviour of rock joints", Comput. Geotech., 51, 101-115. https://doi.org/10.1016/j.compgeo.2013.02.003
  6. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013b), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012
  7. Burbidge, D.R. and Braun, J. (2002), "Numerical models of the evolution of accretionary wedges and fold-and-thrust belts using the distinct-element method", Geophys. J. Int., 148(3), 542-561. https://doi.org/10.1046/j.1365-246x.2002.01579.x
  8. Chiu, C.C., Wang, T.T., Weng, M.C. and Huang, T.H. (2013), "Modeling the anisotropic behavior of jointed rock mass using a modified smooth-joint model", Int. J. Rock Mech. Min. Sci., 62, 14-22. https://doi.org/10.1016/j.ijrmms.2013.03.011
  9. Cundall, P.A. (1971), "A computer model for simulating progressive large scale movements in blocky rock systems", Proceedings of the Symposium of the International Society for Rock Mechanics, Nancy, France.
  10. Cundall, P.A. (2001), Numerical Experiments on Rough Joints in Shear Using a Bonded Particle Model, In: Lehner, F.K., Urai, J.L., Editors, Aspects of tectonic faulting (Festschrift in Honour of George Mandl), Springer, Berlin, Germany.
  11. Cundall, P.A. (2011), "The synthetic rock mass approach for jointed rock mass modeling", Int. J. Rock Mech. Min. Sci., 48(2), 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
  12. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  13. Dalguer, L.A., Ikikura, K. and Riera, J.D. (2003), "Generation of new cracks accompanied by the dynamic shear rupture propagation of the 2000 Tottori (Japan) earthquake", Bull Seismol. Soc. Am., 93(5), 2236-2252 https://doi.org/10.1785/0120020171
  14. Diederichs, M.S., Kaiser, P.K. and Eberhardt, E. (2004), "Damage initiation and propagation in hard rock during tunneling and the influ-ence of near-face stress rotation", Int. J. Rock Mech. Min. Sci., 41(5), 785-812. https://doi.org/10.1016/j.ijrmms.2004.02.003
  15. Erickson, S.G., Strayer, L.M. and Suppe, J. (2001), "Initiation and reactiva-tion of faults during movement over a thrust-fault ramp: Numerical mechanical models", J. Struct. Geol., 23(1), 11-23. https://doi.org/10.1016/S0191-8141(00)00074-2
  16. Esmaieli, K., Hadjigeorgiou, J. and Grenon, M. (2010), "Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick mine", Int. J. Rock Mech. Min. Sci., 47(6), 915-926. https://doi.org/10.1016/j.ijrmms.2010.05.010
  17. Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(4), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2
  18. Fan, X., Kulatilake, P.H.S.W. and Chen, X. (2015), "Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: A particle mechanics approach", Eng. Geol., 190, 17-32. https://doi.org/10.1016/j.enggeo.2015.02.008
  19. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Sol., 22(5), 1205-1218.
  20. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  21. Hadjigeorgiou, J., Esmaieli, K. and Grenon, M. (2009), "Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model", Tunn. Undergr. Sp. Technol., 24(3), 296-330. https://doi.org/10.1016/j.tust.2008.10.002
  22. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  23. Haeri, H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  24. Haeri, H. and Sarfarazi, V. (2016a), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
  25. Haeri, H. and Sarfarazi, V. (2016b), "The effect of non-persistent joints on sliding direction of rock slopes, computers and concrete", 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  26. Haeri, H., Khaloo, A. and Marji, M.F. (2014), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 729-7308.
  27. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  28. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  29. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  30. Haeri, H., Sarfarazi, V. and Khaloo, A. (2016), "Experimental study of shear behavior of planar non- persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  31. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  32. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
  33. Hazzard, J.F. and Young, R.P. (2000), "Simulating acoustic emissions in bonded-particle models of rock", Int. J. Rock Mech. Min. Sci., 37(5), 867-872. https://doi.org/10.1016/S1365-1609(00)00017-4
  34. Hazzard, J.F. and Young, R.P. (2004), "Dynamic modelling of induced seismicity", Int. J. Rock Mech. Min. Sci., 41(8), 1365-1376. https://doi.org/10.1016/j.ijrmms.2004.09.005
  35. Holt, R.M., Doornhof, D. and Kenter, C.J. (2003), "Use of discrete particle modeling to understand stress-release effects on mechanical and petrophysical behavior of granular rocks", Proceedings of the 1st International PFC Symposium, Gelsenkirchen, Germany.
  36. ISRM (1978), "International society for rock mechanics, commission on standardization of laboratory and field tests. Suggested methods for determining tensile strength of rock materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15, 99-103. https://doi.org/10.1016/0148-9062(78)90003-7
  37. Itasca (1999), PFC2D-Particle Flow Code in 2 Dimensions. Theory and Background, Itasca Consulting Group, Minneapolis, U.S.A.
  38. Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 1-8.
  39. Konietzky, H. Numerical Modeling in Micromechanics via Particle Methods, Swets & Zeitlinger, Lisse, the Netherlands.
  40. Lambert, C. and Coll, C. (2014), "Discrete modeling of rock joints with a smooth-joint contact model", J. Rock Mech. Geotech. Eng., 6(1), 1-12. https://doi.org/10.1016/j.jrmge.2013.12.003
  41. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  42. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  43. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  44. Mas Ivars, D., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Paul Young, R., Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  45. Mora, P. and Place, D. (1993), "A lattice solid model for the nonlinear dynamics of earthquakes", Int. J. Mod. Phys., 4(6), 1059-1074. https://doi.org/10.1142/S0129183193000823
  46. Mora, P. and Place, D. (1998), "Numerical simulation of earthquake faults with gouge: Toward a comprehensive explanation for the heat flow paradox", J. Geophys. Res., 103(B9), 21067-21089. https://doi.org/10.1029/98JB01490
  47. Morgan, J.K. and Boettcher, M.S. (1999), "Numerical simulations of granular shear zones using the distinct element method-1. Shear zone kinematics and the micromechanics of localization", J. Geophys. Res., 104(B2), 2703-2719. https://doi.org/10.1029/1998JB900056
  48. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  49. Ohnishi, Y. and Aoki, K. (2004), "Contribution of rock mechanics to the new century", Proceedings of the 3rd Asian Rock Mechanics Symposium, Mill Press, Rotterdam, the Netherlands.
  50. Okabe, T., Haba, T., Mitarashi, Y., Tezuka, H. and Jiang, Y. (2004), "Study on the effect of tunnel face stabilization using the distinct element method", Proceedings of the 3rd Asian Rock Mechanics Symposium, Mill Press, Rotterdam, the Netherlands.
  51. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  52. Park, E.S., Martin, C.D. and Christiansson, R. (2004), "Simulation of the mechanical behavior of discontinuous rock masses using a bonded-particle model", Proceedings of the 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, U.S.A.
  53. Sainsbury, D.P., Cai, Y. and Hebblewhite, B.K. (2003), Numerical Investigation of Crown Pillar Recovery Beneath Stabilized Rockfill, In: Konietzky H (ed) Numerical Modeling in Micromechanics via Particle Methods, Swets & Zeitlinger, Lisse, the Netherlands.
  54. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  55. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  56. Sarfarazi, V., Haeri, H. and Bagher Shemirani, A. (2017a), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 39-47. https://doi.org/10.12989/CAC.2017.20.1.039
  57. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016), "The effect of nonpersistent joints on sliding direction if rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  58. Sarfarazi, V., Haeri, H., Bagher Shemirani, A. and Zhu, Z. (2017b), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 57-63.
  59. Sarfarazi, V., Haeri, H., Bagher Shemirani, A., Hedayat, A. and Hosseini, S. (2017c), "Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D", Comput. Concrete, 20(4), 429-437.
  60. Scholtes, L. and Donze, F.V. (2012), "Modelling progressive failure in fractured rock masses using a 3D discrete element method", Int. J. Rock Mech. Min. Sci., 52, 18-30. https://doi.org/10.1016/j.ijrmms.2012.02.009
  61. Scott, D.R. (1996), "Seismicity and stress rotation in a granular model of the brittle crust", Nat., 381(6583), 592-595. https://doi.org/10.1038/381592a0
  62. Seyferth, M. and Henk, A. (2002), "Coupled DEM and FEM models: An approach to bridge the gap between large-scale geodynamic and high-resolution tectonic modeling", EOS Trans. (Fall Meet. Suppl)., 83, 1376-1377.
  63. Seyferth, M. and Henk, A. (2006), "A numerical sandbox: Highresolution distinct element models of halfgraben formation", Int. J. Earth Sci., 95(2), 189-203. https://doi.org/10.1007/s00531-005-0034-x
  64. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
  65. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  66. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  67. Strayer, L.M. and Suppe, J. (2002), "Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp: A distinct-element approach", J. Struct. Geol., 24(4), 637-650. https://doi.org/10.1016/S0191-8141(01)00115-8
  68. Tannant, D.D. and Wang, C. (2004), "Thin tunnel liners modeled with particle flow code", Eng. Comput., 21(2/3/4), 318-342. https://doi.org/10.1108/02644400410519811
  69. Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
  70. Van Vliet, M.R.A. and Van Mier, J.G.M. (2000), "Experimental investigation of size effect in concrete and sandstone under uniaxial tension", Eng. Fract. Mech., 65(2-3), 165-188. https://doi.org/10.1016/S0013-7944(99)00114-9
  71. Vietor, T. (2003), "Numerical simulation of collisional orogeny using the distinct element technique", In: Konietzky, H. (ed) Numerical Modeling in Micromechanics via Particle Methods, Swets& Zeitlinger, Lisse, the Netherlands.
  72. Vorechovsky, M. (2007), "Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics", Int. J. Sol. Struct., 44(9), 2715-2731. https://doi.org/10.1016/j.ijsolstr.2006.08.019
  73. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Proc.-Soc. Behav. Sci., 198, 2280-2289.
  74. Wang, C., Tannant, D.D. and Lilly, P.A. (2003), "Numerical analysis of the stability of heavily jointed rock slopes using PFC2D", Int. J. Rock Mech. Min. Sci., 40(3), 415-424 https://doi.org/10.1016/S1365-1609(03)00004-2
  75. Wang, Y., Zhou, X.P. and Kou, M. (2018a), "A coupled thermomechanical bond-based peridynamics for simulating thermal cracking in rocks", Int. J. Fract., 211(19).
  76. Wang, Y., Zhou, X.P. and Kou, M. (2018b), "Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles", Ceram. Int., 44(10), 11512-11542. https://doi.org/10.1016/j.ceramint.2018.03.214
  77. Wang, Y., Zhou, X.P., Wang, Y. and Shou, Y. (2018), "A 3-D conjugated bond-pair-based peridynamic formulation for initiation and propagation of cracks in brittle solids", Int. J. Sol. Struct., 134, 89-115. https://doi.org/10.1016/j.ijsolstr.2017.10.022
  78. Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643.
  79. Wang, Y.T., Zhou, X.P. and Xu, X. (2016), "Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics", Eng. Fract. Mech., 163, 248-273. https://doi.org/10.1016/j.engfracmech.2016.06.013
  80. Zhou, X.P. (2010), "Dynamic damage constitutive relation of mesoscopic heterogenous brittle rock under rotation of principal stress axes", Theoret. Appl. Fract. Mech., 54(2), 110-116. https://doi.org/10.1016/j.tafmec.2010.10.006
  81. Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378
  82. Zhou, X.P. and Wang, Y. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  83. Zhou, X.P. and Wang, Y. (2016), "Numerical simulation of initiation, propagation and coalescence of cracks using the nonordinary state-based peridynamics", Int. J. Fract., 201(2), 213-234. https://doi.org/10.1007/s10704-016-0126-6
  84. Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  85. Zhou, X.P. and Yang, H.Q. (2007), "Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock", Theoret. Appl. Fract. Mech., 48(1), 1-20. https://doi.org/10.1016/j.tafmec.2007.04.008
  86. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001
  87. Zhou, X.P., Wang, Y., Shou, Y. and Kou, M. (2018), "A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads", Eng. Fract. Mech., 188, 151-183. https://doi.org/10.1016/j.engfracmech.2017.07.031
  88. Zi, G., Kim, J. and Bazant, Z.P. (2014), "Size effect on biaxial flexural strength of concrete", ACI Mater. J., 111(3), 1-8.

피인용 문헌

  1. Numerical simulation on the crack initiation and propagation of coal with combined defects vol.79, pp.2, 2018, https://doi.org/10.12989/sem.2021.79.2.237