DOI QR코드

DOI QR Code

Simulation of the tensile failure behaviour of transversally bedding layers using PFC2D

  • Haeri, Hadi (College of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (College of Architecture and Environment, Sichuan University) ;
  • Marji, Mohammad Fatehi (Department of Mining Engineering, Yazd University)
  • Received : 2018.03.30
  • Accepted : 2018.06.07
  • Published : 2018.09.10

Abstract

In this paper, the tensile failure behaviour of transversally bedding layers was numerically simulated by using particle flow code in two dimensions. Firstly, numerical model was calibrated by uniaxial, Brazilian and triaxial experimental results to ensure the conformity of the simulated numerical model's response. Secondly, 21 circular models with diameter of 54 mm were built. Each model contains two transversely bedding layers. The first bedding layer has low mechanical properties, less than mechanical properties of intact material, and second bedding layer has high mechanical properties, more than mechanical properties of intact material. The angle of first bedding layer, with weak mechanical properties, related to loading direction was $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$ and $90^{\circ}$ while the angle of second layer, with high mechanical properties, related to loading direction was $90^{\circ}$, $105^{\circ}$, $120^{\circ}$, $135^{\circ}$, $150^{\circ}$, $160^{\circ}$ and $180^{\circ}$. Is to be note that the angle between bedding layer was $90^{\circ}$ in all bedding configurations. Also, three different pairs of the thickness was chosen in models; i.e., 5 mm/10 mm, 10 mm/10 mm and 20 mm/10 mm. The result shows that In all configurations, shear cracks develop between the weaker bedding layers. Shear cracks angel related to normal load change from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Numbers of shear cracks are constant by increasing the bedding thickness. It's to be note that in some configuration, tensile cracks develop through the intact area of material model. There is not any failure in direction of bedding plane interface with higher strength.

Keywords

References

  1. Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci., 33(3), 293-325. https://doi.org/10.1016/0148-9062(95)00062-3
  2. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2014), "Scale effect on the shear behaviour of rock joints based on a numerical study", Eng. Geol., 181, 212-223. https://doi.org/10.1016/j.enggeo.2014.07.018
  3. Bahaaddini, M., Hagan, P.C., Mitra, R. and Hebblewhite, B.K. (2016a), "Numerical study of the mechanical behavior of nonpersistent jointed rock masses", Int. J. Geomech., 16(1), 1-10.
  4. Bahaaddini, M., Hagan, P.C., Mitra, R. and Khosravi, M.H. (2016b), "Experimental and numerical study of asperity degradation in the direct shear test", Eng. Geol., 204, 41-52. https://doi.org/10.1016/j.enggeo.2016.01.018
  5. Cho, J.W., Kim, H., Jeon, S.W. and Min, K.B. (2012), "Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist", Int. J. Rock Mech. Min. Sci., 50, 158-169. https://doi.org/10.1016/j.ijrmms.2011.12.004
  6. Dan, D.Q. and Konietzky, H. (2014), "Numerical simulations and interpretations of Brazilian tensile tests on transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 71, 53-63. https://doi.org/10.1016/j.ijrmms.2014.06.015
  7. Dan, D.Q., Konietzky, H. and Herbst, M. (2013), "Brazilian tensile strength tests on some anisotropic rocks", Int. J. Rock Mech. Min. Sci., 58, 1-7. https://doi.org/10.1016/j.ijrmms.2012.08.010
  8. Duan, K. and Kwok, C.Y. (2015), "Discrete element modeling of anisotropic rock under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 78, 46-56. https://doi.org/10.1016/j.ijrmms.2015.04.023
  9. Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Sol., 22(5), 1205-1218.
  10. Fortsakis, P., Nikas, K., Marinos, V. and Marinos, P. (2012), "Anisotropic behaviour of stratified rock masses in tunneling", Eng. Geol., 141, 74-83.
  11. Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
  12. Gholami, R. and Rasouli, V. (2014), "Mechanical and elastic properties of transversely isotropicslate", Rock Mech. Rock Eng., 47(5), 1763-1773. https://doi.org/10.1007/s00603-013-0488-2
  13. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  14. Haeri, H. (2015), "Simulating the crack propagation mechanism of pre-cracked concrete specimens under shear loading conditions", Strength Mater., 47(4), 618-632. https://doi.org/10.1007/s11223-015-9698-z
  15. Haeri, H. and Sarfarazi, V. (2016), "The effect of micro pore on the characteristics of crack tip plastic zone in concrete", Comput. Concrete, 17(1), 107-112. https://doi.org/10.12989/cac.2016.17.1.107
  16. Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  17. Haeri, H., Khaloo, A. and Marji, M.F. (2014), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7729-7308.
  18. Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  19. Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sin., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  20. Haeri, H., Khaloo, A. and Marji, M.F. (2016a), "Fracture analyses of different preholed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
  21. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  22. Haeri, H., Sarfarazi, V. and Lazemi, H.A. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  23. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand, P. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading", Proceedings of the 13th International Conference on Fracture, Beijing, China, June.
  24. Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Space Technol., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001
  25. Jia, P. and Tang, C.A. (2008), "Numerical study on failure mechanism of tunnel in jointed rock mass", Tunn. Undergr. Space Technol., 23(5), 500-507. https://doi.org/10.1016/j.tust.2007.09.001
  26. Jiang, Y., Tanabashi, Y., Li, B. and Xiao, J. (2006), "Influence of geometrical distribution of rock joints on deformational behavior of underground opening", Tunn. Undergr. Space Technol., 21(5), 485-491. https://doi.org/10.1016/j.tust.2005.10.004
  27. Johansson, F. (2016), "Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints", Int. J. Rock Mech. Min. Sci., 82, 36-47. https://doi.org/10.1016/j.ijrmms.2015.11.010
  28. Khanlari, G., Rafiei, B. and Abdilor, Y. (2015), "An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones", Rock Mech. Rock Eng., 48(2), 843-852. https://doi.org/10.1007/s00603-014-0576-y
  29. Khosravi, A., Simon, R. and Rivard, P. (2017), "The shape effect on the morphology of the fracture surface induced by the Brazilian test", Int. J. Rock Mech. Min. Sci., 93, 201-209. https://doi.org/10.1016/j.ijrmms.2017.01.007
  30. Kim, J. and Taha, M.R. (2014), "Experimental and numerical evaluation of direct tension test for cylindrical concrete specimens", Adv. Civil Eng., 1-8.
  31. Lancaster, I.M. and Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  32. Lazear, G.D. (2009), "Fractures, convection and under pressure: Hydrogeology on the Southern margin of the Piceance basin, west-central Colorado, USA", Hydrogeol. J., 17(3), 641-664. https://doi.org/10.1007/s10040-008-0381-3
  33. Li, L.C., Xia, Y.J., Huang, B., Zhang, L.Y., Li, M. and Li, A.S. (2016), "The behaviour of fracture growth in sedimentary rocks: A numerical study based on hydraulic fracturing processes", Energies, 9(3), 169-197. https://doi.org/10.3390/en9030169
  34. Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
  35. Li, X.L. (2013), "Timodaz: A successful international cooperation project to investigate the thermal impact on the EDZ around a radioactive waste disposal in clay host rocks", J. Rock Mech. Geotech. Eng., 5(3), 231-242. https://doi.org/10.1016/j.jrmge.2013.05.003
  36. Lisjak, A., Garitte, B., Grasselli, G., Muller, H.R. and Vietor, T. (2015), "The excavation of a circular tunnel in a bedded argillaceous rock (opalinus clay): Short-term rock mass response and FDEM numerical analysis", Tunn. Undergr. Space Technol., 45, 227-248. https://doi.org/10.1016/j.tust.2014.09.014
  37. Liu, K.D., Liu, Q.S., Zhu, Y.G. and Liu, B. (2013), "Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression", Chin. J. Rock Mech. Eng., 32(2), 308-316.
  38. Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation, case studies in construction naterials", 3, 70-77. https://doi.org/10.1016/j.cscm.2015.07.002
  39. Ma, T., Wu, B., Fu, J., Zhang, Q. and Chen, P. (2017b), "Fracture pressure prediction for layered formations with anisotropic rock strengths", J. Nat. Gas Sci. Eng., 38, 485-503. https://doi.org/10.1016/j.jngse.2017.01.002
  40. Ma, T., Zhang, Q.B., Chen, P., Yang, C. and Zhao, J. (2017a), "Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths", J. Petrol. Sci. Eng., 149, 393-408. https://doi.org/10.1016/j.petrol.2016.10.050
  41. Min, K.B. and Jing, L.R. (2003), "Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method", Int. J. Rock Mech. Min. Sci., 40(6), 795-816. https://doi.org/10.1016/S1365-1609(03)00038-8
  42. Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
  43. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  44. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  45. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  46. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  47. Sarfarazi, V., Haeri, H. and Bagher Shemirani, A. (2017a), "Direct and indirect methods for determination of mode I fracture toughness using PFC2D", Comput. Concrete, 20(1), 39-47. https://doi.org/10.12989/CAC.2017.20.1.039
  48. Sarfarazi, V., Haeri, H., Bagher Shemirani, A. and Zhu, Z. (2017b), "The effect of compression load and rock bridge geometry on the shear mechanism of weak plane", Geomech. Eng., 13(3), 57-63.
  49. Sarfarazi, V., Haeri, H., Bagher Shemirani, A., Hedayat, A. and Hosseini, S. (2017c), "Investigation of ratio of TBM disc spacing to penetration depth in rocks with different tensile strengths using PFC2D", Comput. Concrete, 20(4), 429-437.
  50. Seingre, G. (2005), Tunnel de Base du Lotschberg-Bil an de L'excavation aux Tunneliers, In: Arnould, M., Ledru, P. (Eds.), GEOLINE 2005, BRGM editions. Lyon, France, May.
  51. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panelsexperiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  52. Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  53. Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47(2), 313-322. https://doi.org/10.1016/j.ijrmms.2010.01.001
  54. Tiang, Y., Shi, S., Jia, K. and Hu, S. "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156.
  55. Vervoort, A., Min, K.B., Konietzky, H., Cho, J.W., Debecker, B., Dinh, Q.D., Frühwirt, T. and Tavallali, A. (2014), "Failure of transversely isotropic rock under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 70, 343-352. https://doi.org/10.1016/j.ijrmms.2014.04.006
  56. Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Proc.-Soc. Behav. Sci., 198, 2280-2289.
  57. Wang, J., Xie, L.Z., Xie, H.P., Ren, L., He, B., Li, C.B., Yang, Z.P. and Gao, C. (2016a), "Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests", J. Nat. Gas Sci. Eng., 36, 1120-1129. https://doi.org/10.1016/j.jngse.2016.03.046
  58. Wang, P.T., Ren, F.H., Miao, S.J., Cai, M.F. and Yang, T.H. (2017), "Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests", Eng. Geol., 225, 29-41. https://doi.org/10.1016/j.enggeo.2017.03.004
  59. Wang, P.T., Yang, T.H., Xu, T., Cai, M.F. and Li, C.H. (2016b), "Numerical analysis on scale effect of elasticity, strength and failure patterns of jointed rock masses", Geosci. J., 20(4), 539-549. https://doi.org/10.1007/s12303-015-0070-x
  60. Wang, S.Y., Sloan, S.W., Tang, C.A. and Zhu, W.C. (2012), "Numerical simulation of the failure mechanism of circular tunnels in transversely isotropic rock masses", Tunn. Undergr. Space Technol., 32, 231-244. https://doi.org/10.1016/j.tust.2012.07.003
  61. Wang, T., Xu, D., Elsworth, D. and Zhou, W. (2016c), "Distinct element modeling of strength variation in jointed rock masses under uniaxial compression", Geomech. Geophys. Geo-Eng. Geo-Res., 2(1), 11-24. https://doi.org/10.1007/s40948-015-0018-7
  62. Wang, Y.T., Zhou, X.P. and Shou, Y.D. (2017), "The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics", Int. J. Mech. Sci., 128, 614-643.
  63. Wasantha, P.L.P., Ranjith, P.G., Zhang, Q.B. and Xu, T. (2015), "Do joint geometrical properties influence the fracturing behaviour of jointed rock? An investigation through joint orientation", J. Geomech. Geophys. Geol. Energy Geol. Res., 1(1-2), 3-14. https://doi.org/10.1007/s40948-015-0001-3
  64. Wu, W., Wang, G.B. and Mao, H.J. (2010), "Investigation of porosity effect on mechanical strength characteristics of dolostone", Rock Soil Mech., 31(12), 3709-3714.
  65. Xia, K., Yao, W. and Wu, B. (2017), "Dynamic rock tensile strengths of Laurentian granite: Experimental observation and micromechanical model", J. Rock Mech. Geotech. Eng., 9(1), 116-124. https://doi.org/10.1016/j.jrmge.2016.08.007
  66. Xu, T., Ranjith, P.G., Wasantha, P.L.P., Zhao, J., Tang, C.A. and Zhu, W.C. (2013), "Influence of the geometry of partiallyspanning joints on mechanical properties of rock in uniaxial compression", Eng. Geol., 167, 134-147. https://doi.org/10.1016/j.enggeo.2013.10.011
  67. Yang, T., Liu, H.Y. and Tang, C.A. (2017), "Scale effect in macroscopic permeability of jointed rock mass using a coupled stress-damage-flow method", Eng. Geol., 228, 121-136. https://doi.org/10.1016/j.enggeo.2017.07.009
  68. Yang, T.H., Wang, P.T., Xu, T., Yu, Q.L., Zhang, P.H., Shi, W.H. and Hu, G.J. (2015), "Anisotropic characteristics of fractured rock mass and a case study in Shirengou metal mine in China", Tunn. Undergr. Space Technol., 48, 129-139. https://doi.org/10.1016/j.tust.2015.03.005
  69. Yu, L., Weetjens, E., Sillen, X., Vietor, T., Li, X., Delage, P., Labiouse, V. and Charlier, R. (2014), "Consequences of the thermal transient on the evolution of the damaged zone around a repository for heat-emitting high-level radioactive waste in a clay formation: A performance assessment perspective", Rock Mech. Rock Eng., 47(1), 3-19. https://doi.org/10.1007/s00603-013-0409-4
  70. Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", Int. J. Rock Mech. Min. Sci., 93, 54-65. https://doi.org/10.1016/j.ijrmms.2017.01.010
  71. Zhang, S.W., Shou, K.J., Xian, X.F., Zhou, J.P. and Liu, G.J. (2018), "Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests", Tunn. Undergr. Space Technol., 71, 298-308. https://doi.org/10.1016/j.tust.2017.08.031
  72. Zhou, J.R., Wei, J., Yang, T.H., Zhu, W.C., Li, L.C. and Zhang, P.H. (2018), "Damage analysis of rock mass coupling joints, water and microseismicity", Tunn. Undergr. Space Technol., 71, 366-381. https://doi.org/10.1016/j.tust.2017.09.006
  73. Zhou, X.P. and Bi, J. (2018), "Numerical simulation of thermal cracking in rocks based on general particle dynamics", J. Eng. Mech., 144(1), 04017156. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001378
  74. Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
  75. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27. https://doi.org/10.1016/j.ijrmms.2012.06.001