DOI QR코드

DOI QR Code

Fabrication of Poly(ethylene oxide)/Ag Nanoparticles/p-benzoquinone Composite Membrane Using AgNO3 Precursor for Olefin/Paraffin Separation

올레핀/파라핀 분리용 AgNO3 전구체를 활용한 poly(ethylene oxide)/Ag nanoparticles/p-benzoquinone 복합체 분리막 제조

  • kim, Minsu (Department of Chemistry and Energy Engineering, Sangmyung University) ;
  • Kang, Sang Wook (Department of Chemistry and Energy Engineering, Sangmyung University)
  • 김민수 (상명대학교 화학에너지공학과) ;
  • 강상욱 (상명대학교 화학에너지공학과)
  • Received : 2018.07.25
  • Accepted : 2018.08.24
  • Published : 2018.08.31

Abstract

Poly (ethylene oxide) (PEO)/Ag nanoparticles (AgNPs)(precursor : $AgBF_4$)/p-benzoquinone (p-BQ) composite membrane was prepared for olefin/paraffin separation. As a result, the performance of composite membrane was observed to be maintained at selectivity of 10 and permeance of 15 GPU up to 100 hours. The performance of the membrane was maintained for 100 hours was attributable to that Ag ions could be converted into stable Ag NPs by addition of p-BQ. Furthermore, the surface was partially polarized by the electron acceptor p-BQ, resulting in the formation of olefin carrier. In this study, since the cost of $AgBF_4$ used as a precursor of Ag NPs was relatively higher, $AgNO_3$ was utilized. As a result, it was confirmed that $AgNO_3$ couldn't show the stable formation of nanoparticle, resulting in the poor separation performance.

올레핀/파라핀 분리를 위해 poly(ethylene oxide)(PEO)/Ag nanoparticles (AgNPs)(전구체: $AgBF_4$)/p-benzoquinone (p-BQ) 복합막이 제조되었으며, 이 복합체 분리막의 성능은 100시간까지 선택도 10과 투과도 15 GPU로 유지되는 것이 관찰되었다. 분리막의 성능이 100시간까지 유지할 수 있었던 이유는 p-BQ의 첨가로 인해 Ag ion이 안정적으로 Ag nanoparticles로 형성될 수 있었을 뿐더러 전자수용체인 p-BQ으로 인해 표면이 부분 양극성화 되어 올레핀 운반체로서 역할을 성공적으로 수행한 결과라 생각되었다. 본 연구에서는 Ag nanoparticles의 전구체로 사용된 $AgBF_4$의 가격이 고가이기 때문에 가격 측면에서 유리한 $AgNO_3$ Ag nanoparticles의 전구체로 사용하여 실험을 진행하였다. 그 결과로서 $AgNO_3$의 경우에는 앞선 $AgBF_4$과는 다르게 안정적으로 은 나노입자가 형성되지 못하고 이로 인하여 좋은 성능을 내지 못하는 것으로 분석되었다.

Keywords

References

  1. H. J. Shin, R. Ryoo, Z. Liu, and O. Terasaki, "Template synthesis of asymmetrically mesostructured platinum networks", J. Am. Chem. Soc., 123, 1246 (2001). https://doi.org/10.1021/ja003461t
  2. M.-C. Daniel and D. Astruc, "Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology", Chem. Rev., 104, 293 (2004). https://doi.org/10.1021/cr030698+
  3. Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles", Science, 298, 2176 (2002). https://doi.org/10.1126/science.1077229
  4. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles", J. Am. Chem. Soc., 124, 10596 (2002). https://doi.org/10.1021/ja020393x
  5. N. R. Jana, T. K. Sau, and T. Pal, "Growing small silver particle as redox catalyst", J. Phys. Chem. B, 103, 115 (1999). https://doi.org/10.1021/jp982731f
  6. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, "Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy", Nano Lett., 3, 1229 (2003). https://doi.org/10.1021/nl0344209
  7. D. E. Gottschlich and D. L. Roberts, "Energy minimization of separation processes using conventional/ membrane hybrid systems", DOE Report No. DE-AC-07-76ID01570 (1990).
  8. I. Pinnau and L. G. Toy, "Solid polymer electrolyte composite membranes for olefin/paraffin separation, Journal of Membrane Science", J. Membr. Sci., 184, 39 (2001). https://doi.org/10.1016/S0376-7388(00)00603-7
  9. J. Padin, R. T. Yang, and C. L. Munson, "New sorbents for olefin-paraffin separations and olefin purification for C4 hydrocarbons, C. L. munson", Ind. Eng. Chem. Res., 38, 3614 (1999). https://doi.org/10.1021/ie980779+
  10. W. Hu and A. J. Tanioka, "Multilayer diffusion behavior and the swelling effect of 1-butene and propylene in dry $AgNO_3$-doped perfluorocarbon type ion-exchange membranes", J. Phys. Chem. B, 105, 4629 (2001). https://doi.org/10.1021/jp004383z
  11. K. Adachi, W. Hu, H. Matsumoto, K. Ito, and A. Tanioka, "Permeation of n-butane, 1-butane and 1,3-butadiene through anhydrated Ag+-doped perfluorocarb on-typeion-exchange membranes", Polymer, 39, 2315 (1998). https://doi.org/10.1016/S0032-3861(97)00511-9
  12. W. Hu, A. Tanioka, T. Imase, S. Kawauchi, H. Wang, and Y. J. Suma, "Sorption behavior of 1-butene in perfluorocarbon type ion-exchange membranes doped with various silver salts", J. Phys. Chem. B, 104, 4867 (2000). https://doi.org/10.1021/jp993264k
  13. C. H. Park, J. H. Lee, M. S. Park, and J. H. Kim, "Facilitated transport: Basic concepts and applications to gas separation membranes", Membr. J., 27, 205-215 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.3.205
  14. S. J. Kim, J. P. Jung, D. J. Kim, and J. H. Kim, "Effect of mesoporous TiO2 in facilitated olefin transport membranes containing Ag nanoparticles", Membr. J., 25, 398-405 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.398
  15. C. Y. Park, S. H. Han, J. H. Kim, and Y. T. Lee, "Simulation of separation properties of propylene/ propane in silver nanoparticle containing facilitated transport membrane", Membr. J., 24, 409-415 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.409
  16. Y. Yoon, J. Won, and Y. S. Kang, "Polymer electrolyte membranes containing silver ion for facilitated olefin transport", Macromolecules, 33, 3185 (2000). https://doi.org/10.1021/ma0000226
  17. H. S. Kim, J. H. Ryu, H. Kim, B. S. Ahn, and Y. S. Kang, "Reversible olefin complexation by silver ions in dry poly(vinyl methyl ketone) membrane and its application to olefin/paraffin separations", Chem. Commun., 1261 (2000).
  18. S. Sunderrajan, B. D. Freeman, C. K. Hall, and I. Pinnau, "Propane and propylene sorption in solid polymer electrolytes based on poly(ethylene oxide) and silver salts", J. Membr. Sci., 181, 1 (2001). https://doi.org/10.1016/S0376-7388(00)00675-X
  19. Z. Zhang, B. Zhao, and L. Hu, "PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes", J. Solid State Chem., 121, 105 (1996). https://doi.org/10.1006/jssc.1996.0015
  20. G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly(ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905 (2014). https://doi.org/10.1039/c3ra46506c