DOI QR코드

DOI QR Code

해양 자유생활형 선충류 Enoplolaimus sp. (Enoplida: Thoracostomopsidae)와 Bathylaimus sp. (Enoplida: Tripyloididae)의 배양용 적합배지 선정 및 초기 생활사 연구

Sutdy of Appropriate Media Selection and Early Life Cycle of Marine Free-Living Nematodes, Enoplolaimus sp. (Enoplida: Thoracostomopsidae) and Bathylaimus sp. (Enoplida: Tripyloididae)

  • 신아영 (한국해양과학기술원 생태기반연구센터) ;
  • 김동성 (한국해양과학기술원 생태기반연구센터) ;
  • 강태욱 (한국해양과학기술원 생태기반연구센터) ;
  • 오제혁 (한국해양과학기술원 생태기반연구센터) ;
  • 이지민 (한국해양과학기술원 생태기반연구센터) ;
  • 홍재상 (한국연안환경생태연구소)
  • 투고 : 2016.11.18
  • 심사 : 2018.07.06
  • 발행 : 2018.08.31

초록

실험실 내에서의 해양 선충류 최적 배양 조건을 찾기 위해 한천배지로 다양한 배지를 제작하여 선충류를 대상으로 한 연구를 수행하였다. 선충류 채집은 태안 만리포 조간대 중 하부의 사질 퇴적물 표층에서부터 약 5 cm의 퇴적물에서 이루어졌다. 배양에 이용한 한천 배지는 Killian 배지의 조성을 다소 변형하고, 한천 농도에 차이를 두었으며, 이 한천배지들을 직경 60 mm 페트리디쉬에 배지 높이가 2.0 mm가 되도록 분주하였다. 선충류의 먹이 생물로서 순수 배양한 미생물 5종을 혼합하여 각각의 배지에 첨가하였다. 각 배지에 Enoplolaimus sp. 5개체를 접종하여 $20^{\circ}C$, 암배양으로 설정된 배양기 내에서 배양하였다. Enoplolaimus sp.에 대하여 여러 조건의 실험을 반복 수행한 결과, Killian 배지에 소고기 육즙만을 첨가한 배지의 한천농도 1.0%에서 평균 생존시간이 246.8시간으로 가장 높은 생존율을 나타냈다. 가장 낮은 생존시간은 Killian 배지에 bacto peptone과 소고기 육즙(beef extract)을 첨가한 한천농도 0.4%의 먹이 공급을 한 배지에서 평균 27.6시간으로 가장 낮은 생존시간을 나타냈다. Bathylaimus sp.는 Killian 배지 한천농도 1.0%의 먹이 공급을 하지 않은 배지에서 가장 높은 생존시간을 나타내었고, 산란량과 부화율 실험에서는 평균 7개의 알을 산란하였으며 평균 99.5시간 후에 94.7%의 부화율을 보이는 결과를 나타냈다

In order to find the optimum culture condition for marine free-living nematoda in the laboratory, various agar media were developed and experiments were carried on nematodes. Nematodes have collected from the bottom of the sandy sediments' surface layer (about 5cm sediment) of Taean Mallipo beach's intertidal zone. Especially, with regard to agar medium, Killian medium was transformed slightly, density of agar had made a difference and this agar medium(height 2.0 mm on diameter 60 mm Petri dish) was divided. It was mixed with 5 different species of microorganism as nematodes' live food and added each culture medium. Five individuals of Enoplolaimus sp. on each culture medium were grown in a culture medium which was set on $20^{\circ}C$ and light blocked. Moreover, as a result of the optimum culture condition, 1.0% density of agar showed the highest survival rates (the average time of survival is 246.8 hours). On the other hand, the 0.4% density of agar adding Killian medium, bacto peptone and beef extract showed the lowest survival rates, which indicates the average time of survival is 27.6 hours. About Bathylaimus sp., on Killian medium's 1.0% density of agar(no feeding amount) showed the highest survival rates, which connects that the hatching rate 94.7% after 99.5 hours and it laid 7 eggs averagely on the spawning amount and the hatching rate experiment.

키워드

참고문헌

  1. Alkemade, R., A. Wielemaker, S.A. De Jong and A.J.J. Sandee, 1992. Experimental evidence for the role of bioturbation by the marine nematode DiplolaimelJa dievengatensis in stimulating the mineralization of Spartina anglica leaves. Mar. Ecol. Prog. Ser., 90: 149-155. https://doi.org/10.3354/meps090149
  2. Aller, R.C. and J.Y. Aller, 1992. Meiofauna and solute transport in marine muds. Limnol. Oceanogr., 37: 1018-1033. https://doi.org/10.4319/lo.1992.37.5.1018
  3. Bell, S.S. and B.C. Coull, 1978. Field evidence that shrimp predation regulates meiofauna. Oecologia., 35: 141-148. https://doi.org/10.1007/BF00344727
  4. Boufahija, F, F. Semprucci and H. Beyrem, 2016. An experimental protocal to select nemated species from an entire community using progressive sedimentary enrichment. Ecol. Indic., 292-309.
  5. Coull, B.C., 1990. Are members of the meiofauna food for higher trophic levels? Trans. Am. microsc. Soc., 109: 233-246. https://doi.org/10.2307/3226794
  6. Coull, B.C., 1999. Role of meiofauna in estuarine soft-bottom habitats. Aust. J. Ecol., 24:327-343. https://doi.org/10.1046/j.1442-9993.1999.00979.x
  7. Fonseca, G., S. Derycke and T. Moens, 2008. Integrative taxonomy in two free-living nematode species complexes. Biol. J. Linn. Soc., 94:737-753. https://doi.org/10.1111/j.1095-8312.2008.01015.x
  8. Franco, M.A., J. Vanaverbeke, D. Van Oevelen, K. Soetaert, M.J. Costa, M. Vincx and T. Moens, 2010. Respiration partitioning in contrasting subtidal sediments: seasonality and response to a spring phytoplankton deposition. Mar. Ecol. Evol. Perspect., 31: 276-290. https://doi.org/10.1111/j.1439-0485.2009.00319.x
  9. Gerlach, S.A. and M. Schrage, 1969. Freilebende Nematoden als Nahrung der Sandgarnele Crangon crangon. Experimentelle Untersuchungen fiber die Bedeutung der Meiofauna als Nahrung ffir das marine Makrobenthos. Oecologia., 2: 362-375. https://doi.org/10.1007/BF00778992
  10. Gerlach, S.A. and M. Schrage, 1971. Life cycles in marine meiobenthos. Experiments at various temperatures with Monhystera disjuncta and Theristus pertenuis (Nernatoda). Mar. Biol., 9: 274-280. https://doi.org/10.1007/BF00351390
  11. Gerlach, S.A. and M. Schrage, 1972. Life cycles at low temperatures in some freeliving marine nematodes. Verfff. Inst. Meeresforsch. Bremerh., 14: 5-11.
  12. Hamerlynck, O. and A. Vanreusel, 1993. Mesacanthion diplechma (Nematoda: Thoracostomopsidae), a link to higher trophic levels? J. Mar. Biol. Assoc. UK., 73: 453-456. https://doi.org/10.1017/S0025315400032999
  13. Heip, C., N. Stool and V. Absillis, 1978. Influence of temperature on the reproductive potential of Oncholaimus oxyuris (Nematoda, Oncholaimidae). Mar. Biol., 45: 255-260. https://doi.org/10.1007/BF00390608
  14. Help, C, M.G. Vincx and G. Vranken, 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol., 23: 399-489.
  15. Herman Peter, M.J. and G. Vracken, 1988. Studies of the life history and energetics of marine and brackish-water nematodes. Oecologia., 77:457-463. https://doi.org/10.1007/BF00377260
  16. Houthoofd, W, K. Jacobsen, C.l. Mertens, S. Vangestel, A. Coomans and G. Borgonie, 2003. Embryonic cell lineage of the marine nematode Pellioditis marina. Dev. Biol., 258:57-69. https://doi.org/10.1016/S0012-1606(03)00101-5
  17. Jensen, P., 1982. A new meiofauna sample splitter. Ann. Zool. Finn., 19: 233-236.
  18. Jensen, P., 1995. Life history of the nematode Theristus anoxybioticus from sublittoral mussy sediment at methane seepages in the northern Kattegat, Denmark. Mar. Biol., 123:131-136.
  19. Lahl, V., B. Sadler and E. Schierenberg, 2006. Egg development in parthenogenitic nematodes: variations in meiosis and axis formation. Int. J. Dev. Biol., 50:393-398. https://doi.org/10.1387/ijdb.052030vl
  20. Mesel, I.D., S. Derycke, J. Swings, M. Vincx and T. Moens, 2003. Influence of bacterivorous nematodes on the decomposition of cordgrass. J. Exp. Mar. Biol. Ecol., 296:227-242. https://doi.org/10.1016/S0022-0981(03)00338-1
  21. Mesel, I.D., S. Derycke, J. Swings, M. Vincx and T. Moens, 2006. Role of nematodes in decomposition processes: Does within-trophic group diversity matter? Mar. Ecol. Prog. Ser., 321:157-166. https://doi.org/10.3354/meps321157
  22. Moens, T, S. Bouillon and F. Gallucci, 2005a. Dual stable isotope abundances unraveltrophic position of estuarine nematodes. J. Mar. Biol. Assoc. UK., 85:1401-1407. https://doi.org/10.1017/S0025315405012580
  23. Moens, T., Giovanni Amadeu Paiva dos Santos, F. Thompson, J. Swings, B. Fonseca-Genevois, M. Vinck and I.D. Mesel,, 2005b. Do nematode mucus sectretion affect bacterial growth? Aquat. Microb. Ecol., 40:77-83. https://doi.org/10.3354/ame040077
  24. Moens, T. and M. Vincx, 1998. On the cultivation of free-living marine and estuarine nematodes. Helgoland Mar. Res., 52:115-139.
  25. Moens, T. and M. Vincx, 2000a. Temperature and salinity constraints on the life cycle of two brackish water nematode species. J. Exp. Mar. Biol. Ecol., 243: 155-135. https://doi.org/10.1016/S0022-0981(99)00101-X
  26. Moens, T. and M, Vincx, 2000b. Temperature, salinity and food thresholds in two brackishwater bacterivorous nematode species: assessing niches from food absorption and respiration experiments. J. Exp. Mar. Biol. Ecol., 243: 137-154. https://doi.org/10.1016/S0022-0981(99)00114-8
  27. Tsujino, M., T. Uchida and K. Tamai, 1997. Life cycle of the free-living marine nematode, Microlaimus sp.(Chromadorida: Microlaimidae), cultured in the laboratory. Benthos. Res., 1: 9-14.
  28. Tsujino, M., S. Arima and T. Uchida, 1998. Life cycles of two free-living marine nematodes, Prochromadorella sp. and Spiliphera sp. (Chromadorida: Chromadoridae), cultured in the laboratory. Benthos. Res., 53: 89-93. https://doi.org/10.5179/benthos1996.53.2_89
  29. Nehring, S., P. Jensen and S. Lorenzen, 1990. Tube-dwelling nematodes: tube construction and possible ecological effects on sediment-water interfaces. Mar. Eco. Prog. Ser., 64: 123-128. https://doi.org/10.3354/meps064123
  30. Riemann, F. and E. Helmke, 2002. Symbiotic relations of sediment-agglutinating nematodes and bacteria in detrital habitats: the enzyme-sharing concept. Mar. Ecol., 23: 93-113. https://doi.org/10.1046/j.1439-0485.2002.02765.x
  31. Riemann, F. and M. Schrage, 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia, 34: 75-88. https://doi.org/10.1007/BF00346242
  32. Singh, R., B. Ingole, 2011. Life history of a free-living marine nematode Daptonema normandicum reared in laboratory. J. Environ. Biol., 32: 147-152.
  33. Soetaert, K., M.Vincx, J. Wittoeck and M. Tulkens, 1995. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia, 311:185-206. https://doi.org/10.1007/BF00008580
  34. Taheri, M., U. Braeckman, M. Vincx and J. Vanaverbeke, 2014. Effect of short-termhypoxia on marine nematode community structure and vertical distributionpattern in three different sediment types of the North Sea. Mar. Environ. Res., 99: 149-159. https://doi.org/10.1016/j.marenvres.2014.04.010
  35. Tietjen, J.H. and J.J. Lee, 1972. Life cycles of marine nematodes. Influence of temperature and salinity on the development of Monhystera denticulate. Oecologi, 10: 167-176. https://doi.org/10.1007/BF00347988
  36. Tietjen, J.H. and J.J. Lee, 1973. Life history and feeding habits of the marine nematode Chromadora macrolaimoides Steiner. Oecologia, 12: 303-314. https://doi.org/10.1007/BF00345045
  37. Tietjen, J.H., J.J. Lee, J. Rullman, A. Greengart, J. Trompeter, 1970. Gnotobiotic culture and physiological ecology of the marine nematode Rhabditis marina Bastian. Limnol. Oceanogr., 15: 535-543. https://doi.org/10.4319/lo.1970.15.4.0535
  38. Vranken, G. and C. Heip, 1986. The productivity of marine nematodes. Ophelia, 26: 429-442. https://doi.org/10.1080/00785326.1986.10422004
  39. Vranken, G., L.K. Thielemans, K. Heip and M. Vandycke, 1981. Aspects of the Life-Cycle of Monhystera parelegantula (Nematoda; Monhysteridae). Mar. Ecol. Prog. Ser., 6: 67-72. https://doi.org/10.3354/meps006067