References
- Park SH, Kressel HY. Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 2018;33(22):e152. https://doi.org/10.3346/jkms.2018.33.e152
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316(22):2402-10. https://doi.org/10.1001/jama.2016.17216
- Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017;124(7):962-9. https://doi.org/10.1016/j.ophtha.2017.02.008
- Abramoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci 2016;57(13):5200-6. https://doi.org/10.1167/iovs.16-19964
- Ting DS, Cheung CY, Lim G, Tan GS, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 2017;318(22):2211-23. https://doi.org/10.1001/jama.2017.18152
- Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy. PLoS One 2017;12(6):e0179790. https://doi.org/10.1371/journal.pone.0179790
- Choi JY, Yoo TK, Seo JG, Kwak J, Um TT, Rim TH. Multi-categorical deep learning neural network to classify retinal images: a pilot study employing small database. PLoS One 2017;12(11):e0187336. https://doi.org/10.1371/journal.pone.0187336
- Quellec G, Charriere K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal 2017;39:178-93. https://doi.org/10.1016/j.media.2017.04.012
- Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA 2016;316(22):2366-7. https://doi.org/10.1001/jama.2016.17563
- Arunkumar R, Karthigaikumar P. Multi-retinal disease classification by reduced deep learning features. Neural Comput Appl 2017;28(2):329-34. https://doi.org/10.1007/s00521-015-2059-9
- Quellec G, Lamard M, Josselin PM, Cazuguel G, Cochener B, Roux C. Optimal wavelet transform for the detection of microaneurysms in retina photographs. IEEE Trans Med Imaging 2008;27(9):1230-41. https://doi.org/10.1109/TMI.2008.920619
- Decenciere E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, et al. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 2014;33(3):231-4. https://doi.org/10.5566/ias.1155
- Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018;125(8):1264-72. https://doi.org/10.1016/j.ophtha.2018.01.034
Cited by
- Artificial Intelligence in Ophthalmology: Evolutions in Asia vol.9, pp.2, 2018, https://doi.org/10.1097/01.apo.0000656980.41190.bf
- Predicting High Coronary Artery Calcium Score From Retinal Fundus Images With Deep Learning Algorithms vol.9, pp.2, 2020, https://doi.org/10.1167/tvst.9.2.28
- Evaluating the Viability of a Smartphone-Based Annotation Tool for Faster and Accurate Image Labelling for Artificial Intelligence in Diabetic Retinopathy vol.15, pp.None, 2018, https://doi.org/10.2147/opth.s289425
- Leveraging the Generalization Ability of Deep Convolutional Neural Networks for Improving Classifiers for Color Fundus Photographs vol.11, pp.2, 2018, https://doi.org/10.3390/app11020591
- Development of Decision Support Software for Deep Learning-Based Automated Retinal Disease Screening Using Relatively Limited Fundus Photograph Data vol.10, pp.2, 2018, https://doi.org/10.3390/electronics10020163
- Fully Leveraging Deep Learning Methods for Constructing Retinal Fundus Photomontages vol.11, pp.4, 2018, https://doi.org/10.3390/app11041754