DOI QR코드

DOI QR Code

The emerging role of lncRNAs in inflammatory bowel disease

  • Yarani, Reza (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen) ;
  • Mirza, Aashiq H. (Department of Pharmacology, Weill Cornell Medicine, Cornell University) ;
  • Kaur, Simranjeet (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen) ;
  • Pociot, Flemming (Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen)
  • Received : 2018.06.29
  • Accepted : 2018.09.11
  • Published : 2018.12.30

Abstract

Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell-cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD.

Keywords

Acknowledgement

Supported by : Independent Research Fund Denmark

References

  1. Baumgart, D. C. & Sandborn, W. J. Crohn’s disease. Lancet 380, 1590-1605 (2012). https://doi.org/10.1016/S0140-6736(12)60026-9
  2. Kappelman, M. D. et al. The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States. Clin. Gastroenterol. Hepatol. 5, 1424-1429 (2007). https://doi.org/10.1016/j.cgh.2007.07.012
  3. Danese, S. & Fiocchi, C. Ulcerative colitis. N. Engl. J. Med. 365, 1713-1725 (2011). https://doi.org/10.1056/NEJMra1102942
  4. Wang, H. et al. Circulating microRNA223 is a new biomarker for inflammatory bowel disease. Medicine (Baltim.) 95, e2703 (2016). https://doi.org/10.1097/MD.0000000000002703
  5. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119-124 (2012). https://doi.org/10.1038/nature11582
  6. McGovern, D. P., Kugathasan, S. & Cho, J. H. Genetics of inflammatory bowel diseases. Gastroenterology 149, 1163-1176 (2015). e1162. https://doi.org/10.1053/j.gastro.2015.08.001
  7. Cho, J. H. & Brant, S. R. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology 140, 1704-1712 (2011). https://doi.org/10.1053/j.gastro.2011.02.046
  8. Uhlig, H. H. et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147, 990-1007 (2014). e1003. https://doi.org/10.1053/j.gastro.2014.07.023
  9. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307-317 (2011). https://doi.org/10.1038/nature10209
  10. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101-108 (2012). https://doi.org/10.1038/nature11233
  11. Chen, L. L. Linking long noncoding RNA localization and function. Trends Biochem. Sci. 41, 761-772 (2016). https://doi.org/10.1016/j.tibs.2016.07.003
  12. Kaikkonen, M. U., Lam, M. T. & Glass, C. K. Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90, 430-440 (2011). https://doi.org/10.1093/cvr/cvr097
  13. Wu, F., Huang, Y., Dong, F. & Kwon, J. H. Ulcerative colitis-associated long noncoding RNA, BC012900, regulates intestinal epithelial cell apoptosis. Inflamm. Bowel Dis. 22, 782-795 (2016). https://doi.org/10.1097/MIB.0000000000000691
  14. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7-21 (2014).
  15. Quinn, J. J. & Chang, H. Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47-62 (2016).
  16. Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155-159 (2009). https://doi.org/10.1038/nrg2521
  17. Mirza, A. H., Kaur, S. & Pociot, F. Long non-coding RNAs as novel players in beta cell function and type 1 diabetes. Hum. Genom. 11, 17 (2017). https://doi.org/10.1186/s40246-017-0113-7
  18. Song, J. et al. PBMC and exosome-derived Hotair is a critical regulator and potent marker for rheumatoid arthritis. Clin. Exp. Med. 15, 121-126 (2015). https://doi.org/10.1007/s10238-013-0271-4
  19. Steck, E. et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J. Mol. Med. (Berl.) 90, 1185-1195 (2012). https://doi.org/10.1007/s00109-012-0895-y
  20. Li, B. et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J. Invest. Dermatol. 134, 1828-1838 (2014). https://doi.org/10.1038/jid.2014.28
  21. Tsitsiou, E. et al. Transcriptome analysis shows activation of circulating CD8+ T cells in patients with severe asthma. J. Allergy Clin. Immunol. 129, 95-103 (2012). https://doi.org/10.1016/j.jaci.2011.08.011
  22. Xu, X. M. & Zhang, H. J. miRNAs as new molecular insights into inflammatory bowel disease: crucial regulators in autoimmunity and inflammation. World J. Gastroenterol. 22, 2206-2218 (2016). https://doi.org/10.3748/wjg.v22.i7.2206
  23. Schaefer, J. S. MicroRNAs: how many in inflammatory bowel disease? Curr. Opin. Gastroenterol. 32, 258-266 (2016). https://doi.org/10.1097/MOG.0000000000000284
  24. Kalla, R. et al. MicroRNAs: new players in IBD. Gut 64, 504-517 (2015). https://doi.org/10.1136/gutjnl-2014-307891
  25. Qiao, Y. Q. et al. LncRNA DQ786243 affects Treg related CREB and Foxp3 expression in Crohn's disease. J. Biomed. Sci. 20, 87 (2013). https://doi.org/10.1186/1423-0127-20-87
  26. Sun, L. et al. LncRNA DQ786243 contributes to proliferation and metastasis of colorectal cancer both in vitro and in vivo. Biosci. Rep. 36, e00328 (2016). https://doi.org/10.1042/BSR20160048
  27. Zhou, X. et al. Long non-coding RNA ANRIL regulates inflammatory responses as a novel component of NF-${\kappa}$B pathway. RNA Biol. 13, 98-108 (2016). https://doi.org/10.1080/15476286.2015.1122164
  28. Congrains, A., Kamide, K., Ohishi, M. & Rakugi, H. ANRIL: molecularmechanisms and implications in human health. Int. J. Mol. Sci. 14, 1278-1292 (2013). https://doi.org/10.3390/ijms14011278
  29. Aguilo, F., Di Cecilia, S. & Walsh, M. J. Long non-coding RNA ANRIL and polycomb in human cancers and cardiovascular disease. Curr. Top. Microbiol. Immunol. 394, 29-39 (2016).
  30. Cunnington, M. S., Santibanez Koref, M., Mayosi, B. M., Burn, J. & Keavney, B. Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6, e1000899 (2010). https://doi.org/10.1371/journal.pgen.1000899
  31. Pasmant, E., Sabbagh, A., Vidaud, M. & Bieche, I. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J. 25, 444-448 (2011). https://doi.org/10.1096/fj.10-172452
  32. Mirza, A. H. et al. Transcriptomic landscape of lncRNAs in inflammatory bowel disease. Genome Med. 7, 39 (2015). https://doi.org/10.1186/s13073-015-0162-2
  33. Haberman, Y. et al. Long ncRNA landscape in the ileum of treatment-naive early-onset Crohn Disease. Inflamm. Bowel Dis. 24, 346-360 (2018). https://doi.org/10.1093/ibd/izx013
  34. Burd, C. E. et al. Expression of linear and novel circular forms of an INK4/ARFassociated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6, e1001233 (2010). https://doi.org/10.1371/journal.pgen.1001233
  35. Rankin, C. R., Iliopoulos, D., Pothoulakis, C. & Padua, D. M. Gene expression profiling identifies CDKN2B-AS1 as a long non-coding RNA associated with IBD and regulated by TGF-beta. Gastroenterology 152, S144 (2017).
  36. Pothoulakis, C., Iliopoulos, D., Rankin, R. & Padua, D. P-307 the long non-coding RNA, CDKN2B-AS1, Is associated with IBD and is downregulated by TGF-beta. Inflamm. Bowel Dis. 23, S98-S98 (2017).
  37. Roussel, M. F. The INK4 family of cell cycle inhibitors in cancer. Oncogene 18, 5311-5317 (1999). https://doi.org/10.1038/sj.onc.1202998
  38. Padua, D. et al. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G446-G457 (2016). https://doi.org/10.1152/ajpgi.00212.2016
  39. Qu, K. et al. Individuality and variation of personal regulomes in primary human T cells. Cell Syst. 1, 51-61 (2015). https://doi.org/10.1016/j.cels.2015.06.003
  40. Peng, H. et al. The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto's thyroiditis. Sci. Rep. 5, 17702 (2015).
  41. Collier, S. P., Collins, P. L., Williams, C. L., Boothby, M. R. & Aune, T. M. Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. Immunol. 189, 2084-2088 (2012). https://doi.org/10.4049/jimmunol.1200774
  42. Berube, J. C. et al. Identification of susceptibility genes of adult asthma in French Canadian women. Can. Respir. J. 2016, 3564341 (2016).
  43. Collier, S. P., Henderson, M. A., Tossberg, J. T. & Aune, T. M. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J. Immunol. 193, 3959-3965 (2014). https://doi.org/10.4049/jimmunol.1401099
  44. Teixeira, L. K., Fonseca, B. P., Barboza, B. A. & Viola, J. P. The role of interferongamma on immune and allergic responses. Mem. Inst. Oswaldo Cruz 100 (Suppl. 1), 137-144 (2005).
  45. Raveh, E., Matouk, I. J., Gilon, M. & Hochberg, A. The H19 Long non-coding RNA in cancer initiation, progression and metastasis - a proposed unifying theory. Mol. Cancer 14, 184 (2015). https://doi.org/10.1186/s12943-015-0458-2
  46. Matouk, I. J. et al. The H19 non-coding RNA is essential for human tumor growth. PLoS ONE 2, e845 (2007). https://doi.org/10.1371/journal.pone.0000845
  47. Chen, S. W. et al. Effect of long noncoding RNA H19 overexpression on intestinal barrier function and its potential role in the pathogenesis of ulcerative colitis. Inflamm. Bowel Dis. 22, 2582-2592 (2016). https://doi.org/10.1097/MIB.0000000000000932
  48. Mousa, A., Misso, M., Teede, H., Scragg, R. & de Courten, B. Effect of vitamin D supplementation on inflammation: protocol for a systematic review. BMJ Open 6, e010804 (2016). https://doi.org/10.1136/bmjopen-2015-010804
  49. Zou, T. et al. H19 long noncoding RNA regulates intestinal epithelial barrier function via microRNA 675 by interacting with RNA-binding protein HuR. Mol. Cell. Biol. 36, 1332-1341 (2016). https://doi.org/10.1128/MCB.01030-15
  50. Chen, D. et al. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn's disease. World J. Gastroenterol. 22, 4716-4731 (2016). https://doi.org/10.3748/wjg.v22.i19.4716
  51. Bakirtzi, K. et al. Neurotensin promotes the development of colitis and intestinal angiogenesis via HIF-1${\alpha}$-miR-210 signaling. J. Immunol. 196, 4311-4321 (2016). https://doi.org/10.4049/jimmunol.1501443
  52. Castagliuolo, I. et al. Neurotensin is a proinflammatory neuropeptide in colonic inflammation. J. Clin. Invest. 103, 843-849 (1999). https://doi.org/10.1172/JCI4217
  53. Gui, X., Liu, S., Yan, Y. & Gao, Z. Neurotensin receptor 1 overexpression in inflammatory bowel diseases and colitis-associated neoplasia. World J. Gastroenterol. 19, 4504-4510 (2013). https://doi.org/10.3748/wjg.v19.i28.4504
  54. Koon, H.-W. et al. Neurotensin induces IL-6 secretion in mouse preadipocytes and adipose issues during 2,4,6,-trinitrobenzensulphonic acid-induced colitis. Proc. Natl. Acad. Sci. USA 106, 8766-8771 (2009). https://doi.org/10.1073/pnas.0903499106
  55. Law, I. K. M. & Pothoulakis, C. MicroRNA-133${\alpha}$ regulates neurotensin-associated colonic inflammation in colonic epithelial cells and experimental colitis. RNA Dis. 2, e472 (2015).
  56. Law, I. K. M. et al. Neurotensin-regulated miR-133${\alpha}$ is involved in proinflammatory signalling in human colonic epithelial cells and in experimental colitis. Gut 64, 1095-1104 (2015). https://doi.org/10.1136/gutjnl-2014-307329
  57. Law, I. K. M., Padua, D. M., Iliopoulos, D. & Pothoulakis, C. Long non-coding RNA (LNCRNA) profiling reveals overexpression of UCA1 and CCAT1 in human colonocytes stimulated by neurotensin and in colonic mucosal tissues from ulcerative colitis (UC) patients. Gastroenterology 152, S143-S144 (2017).
  58. Huang, J. et al. Long non-coding RNA UCA1 promotes breast tumor growth by suppression ofp27 (Kip1). Cell Death Dis. 5, e1008 (2014). https://doi.org/10.1038/cddis.2013.541
  59. Tuo, Y. L., Li, X. M. & Luo, J. Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. Eur. Rev. Med. Pharmacol. Sci. 19, 3403-3411 (2015).
  60. Na, X. Y., Liu, Z. Y., Ren, P. P., Yu, R. & Shang, X. S. Long non-coding RNA UCA1 contributes to the progression of prostate cancer and regulates proliferation through KLF4-KRT6/13 signaling pathway. Int. J. Clin. Exp. Med. 8, 12609-12616 (2015).
  61. Han, Y. et al. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 46, 396-401 (2014). https://doi.org/10.1097/PAT.0000000000000125
  62. Cao, Y., Shi, H., Ren, F., Jia, Y. & Zhang, R. Long non-coding RNA CCAT1 promotes metastasis and poor prognosis in epithelial ovarian cancer. Exp. Cell Res. 359, 185-194 (2017). https://doi.org/10.1016/j.yexcr.2017.07.030
  63. Deng, L., Yang, S. B., Xu, F. F. & Zhang, J. H. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J. Exp. Clin. Cancer Res. 34, 18 (2015). https://doi.org/10.1186/s13046-015-0136-7
  64. Xue, M., Chen, W. & Li, X. Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J. Cancer Res. Clin. Oncol. 142, 1407-1419 (2016). https://doi.org/10.1007/s00432-015-2042-y
  65. Zheng, Q. et al. Aberrant expression of UCA1 in gastric cancer and its clinical significance. Clin. Transl. Oncol. 17, 640-646 (2015). https://doi.org/10.1007/s12094-015-1290-2
  66. Zheng, J. et al. Long nonding RNA UCA1 regulates neural stem cell differentiation by controlling miR-1/Hes1 expression. Am. J. Transl. Res. 9, 3696-3704 (2017).
  67. Heery, R., Finn, S. P., Cuffe, S. & Gray, S. G. Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers 9, 38 (2017). https://doi.org/10.3390/cancers9040038
  68. Bakirtzi, K. et al. Neurotensin signaling activates microRNAs-21 and -155 and Akt, promotes tumor growth in mice, and is increased in human colon tumors. Gastroenterology 141, 1749-1761 (2011). e1741. https://doi.org/10.1053/j.gastro.2011.07.038
  69. Chen, L., Hu, N., Wang, C., Zhao, H. & Gu, Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle (Georget., Tex.) 17, 319-329 (2018). https://doi.org/10.1080/15384101.2017.1407893
  70. Wang, S. et al. KIF9AS1, LINC01272 and DIO3OS lncRNAs as novel biomarkers for inflammatory bowel disease. Mol. Med. Rep. 17, 2195-2202 (2018).
  71. Mourtada-Maarabouni, M., Hedge, V. L., Kirkham, L., Farzaneh, F. & Williams, G. T. Growth arrest in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5 (GAS5). J. Cell Sci. 121, 939-946 (2008). https://doi.org/10.1242/jcs.024646
  72. Lucafo, M. et al. Role of the long non-coding RNA growth arrest-specific 5 in glucocorticoid response in children with inflammatory bowel disease. Basic Clin. Pharmacol. Toxicol. 122, 87-93 (2018). https://doi.org/10.1111/bcpt.12851
  73. Barnes, P. J. & Adcock, I. M. Glucocorticoid resistance in inflammatory diseases. Lancet 373, 1905-1917 (2009). https://doi.org/10.1016/S0140-6736(09)60326-3
  74. Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).
  75. Tani, H., Torimura, M. & Akimitsu, N. The RNA degradation pathway regulates the function of GAS5 a non-coding RNA in mammalian cells. PLOS ONE 8, e55684 (2013). https://doi.org/10.1371/journal.pone.0055684
  76. Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452-463 (2016). https://doi.org/10.1016/j.ccell.2016.03.010
  77. Li, H., Ma, S.-Q., Huang, J., Chen, X.-P. & Zhou, H.-H. Roles of long noncoding RNAs in colorectal cancer metastasis. Oncotarget 8, 39859-39876 (2017).
  78. Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093 (2009). https://doi.org/10.1093/bioinformatics/btp101
  79. Iborra, M., Bernuzzi, F., Invernizzi, P. & Danese, S. MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun. Rev. 11, 305-314 (2012). https://doi.org/10.1016/j.autrev.2010.07.002
  80. Pekow, J. R. & Kwon, J. H. MicroRNAs in inflammatory bowel disease. Inflamm. Bowel Dis. 18, 187-193 (2012). https://doi.org/10.1002/ibd.21691
  81. Edgington-Mitchell, L. E. Long noncoding RNAs: novel links to inflammatory bowel disease? Am. J. Physiol. Gastrointest. Liver Physiol. 311, G444-G445 (2016). https://doi.org/10.1152/ajpgi.00271.2016
  82. Zacharopoulou, E., Gazouli, M., Tzouvala, M., Vezakis, A. & Karamanolis, G. The contribution of long non-coding RNAs in inflammatory bowel diseases. Dig. Liver Dis. 49, 1067-1072 (2017). https://doi.org/10.1016/j.dld.2017.08.003
  83. Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014). https://doi.org/10.1186/s13073-014-0088-0
  84. Eyre, T. A., Wright, M. W., Lush, M. J. & Bruford, E. A. HCOP: a searchable database of human orthology predictions. Brief. Bioinform. 8, 2-5 (2007).
  85. Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 11, 1110-1122 (2015). https://doi.org/10.1016/j.celrep.2015.04.023
  86. Seemann, S. E. et al. The identification and functional annotation of RNA structures conserved in vertebrates. Genome Res. 27, 1371-1383 (2017). https://doi.org/10.1101/gr.208652.116
  87. Mirza, A. H., Kaur, S., Brorsson, C. A. & Pociot, F. Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci. PLoS ONE 9, e105723 (2014). https://doi.org/10.1371/journal.pone.0105723
  88. Mokry, M. et al. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146, 1040-1047 (2014). https://doi.org/10.1053/j.gastro.2013.12.003
  89. Soubieres, A. A. & Poullis, A. Emerging role of novel biomarkers in the diagnosis of inflammatory bowel disease. World J. Gastrointest. Pharmacol. Ther. 7, 41-50 (2016). https://doi.org/10.4292/wjgpt.v7.i1.41
  90. Bolha, L., Ravnik-Glavac, M. & Glavac, D. Long noncoding RNAs as biomarkers in cancer. Dis. Markers 2017, 7243968 (2017).
  91. Ward, M., McEwan, C., Mills, J. D. & Janitz, M. Conservation and tissue-specific transcription patterns of long noncoding RNAs. J. Hum. Transcr. 1, 2-9 (2015). https://doi.org/10.3109/23324015.2015.1077591
  92. Dai, M. et al. Meta-signature LncRNAs serve as novel biomarkers for colorectal cancer: integrated bioinformatics analysis, experimental validation and diagnostic evaluation. Sci. Rep. 7, 46572 (2017). https://doi.org/10.1038/srep46572
  93. Greco, S., Salgado Somoza, A., Devaux, Y. & Martelli, F. Long noncoding RNAs and cardiac disease. Antioxid. Redox. Signal. 29, 880-901 (2018). https://doi.org/10.1089/ars.2017.7126
  94. Kumar, M. M. & Goyal, R. LncRNA as a therapeutic target for angiogenesis. Curr. Top. Med. Chem. 17, 1750-1757 (2017). https://doi.org/10.2174/1568026617666161116144744
  95. Parasramka, M. A., Maji, S., Matsuda, A., Yan, I. K. & Patel, T. Long non-coding RNAs as novel targets for therapy in hepatocellular carcinoma. Pharmacol. Ther. 161, 67-78 (2016). https://doi.org/10.1016/j.pharmthera.2016.03.004

Cited by

  1. Noncoding RNAs: Bridging Regulation of Circadian Rhythms and Inflammation vol.7, pp.3, 2018, https://doi.org/10.3233/nib-190159
  2. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks vol.20, pp.5, 2019, https://doi.org/10.3390/ijms20051223
  3. Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease vol.20, pp.15, 2019, https://doi.org/10.3390/ijms20153662
  4. Long Non-Coding RNA GAS5 and Intestinal MMP2 and MMP9 Expression: A Translational Study in Pediatric Patients with IBD vol.20, pp.21, 2018, https://doi.org/10.3390/ijms20215280
  5. Long Noncoding RNA (lncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer vol.20, pp.22, 2018, https://doi.org/10.3390/ijms20225758
  6. Drug Response Associated With and Prognostic lncRNAs Mediated by DNA Methylation and Transcription Factors in Colon Cancer vol.11, pp.None, 2018, https://doi.org/10.3389/fgene.2020.554833
  7. Epigenetic Mechanisms in Irritable Bowel Syndrome vol.11, pp.None, 2020, https://doi.org/10.3389/fpsyt.2020.00805
  8. Mechanisms and consequences of subcellular RNA localization across diverse cell types vol.21, pp.6, 2020, https://doi.org/10.1111/tra.12730
  9. Lnc-ing RNA Expression with Disease Pathogenesis: MALAT1 and ANRIL in Ulcerative Colitis vol.65, pp.11, 2020, https://doi.org/10.1007/s10620-020-06216-3
  10. lncRNA small nucleolar RNA host gene 12 promotes renal cell carcinoma progression by modulating the miR-200c-5p/collagen type XI α1 chain pathway vol.22, pp.5, 2018, https://doi.org/10.3892/mmr.2020.11490
  11. Epigenetics of spondyloarthritis vol.87, pp.6, 2018, https://doi.org/10.1016/j.jbspin.2020.06.003
  12. The lncRNA Toolkit: Databases and In Silico Tools for lncRNA Analysis vol.6, pp.4, 2018, https://doi.org/10.3390/ncrna6040049
  13. Protection against Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice by Neferine, A Natural Product from Nelumbo nucifera Gaertn vol.22, pp.4, 2018, https://doi.org/10.22074/cellj.2021.6918
  14. Intestinal epithelial cells related lncRNA and mRNA expression profiles in dextran sulphate sodium‐induced colitis vol.25, pp.2, 2021, https://doi.org/10.1111/jcmm.16174
  15. LncRNA LUCAT1 as a Plasma Biomarker for Assessing Disease Activity in Adult Patients with Crohn’s Disease vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5557357
  16. Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8816041
  17. Suppression of Th17 cell differentiation via sphingosine-1-phosphate receptor 2 by cinnamaldehyde can ameliorate ulcerative colitis vol.134, pp.None, 2021, https://doi.org/10.1016/j.biopha.2020.111116
  18. Gliadin, through the Activation of Innate Immunity, Triggers lncRNA NEAT1 Expression in Celiac Disease Duodenal Mucosa vol.22, pp.3, 2018, https://doi.org/10.3390/ijms22031289
  19. LncRNA-WAS and lncRNA-C8807 interact with miR-142a-3p to regulate the inflammatory response in grass carp vol.111, pp.None, 2018, https://doi.org/10.1016/j.fsi.2021.02.003
  20. Long non-coding RNA NEAT1 promotes lipopolysaccharide-induced acute lung injury by regulating miR-424-5p/MAPK14 axis vol.43, pp.7, 2021, https://doi.org/10.1007/s13258-021-01103-1
  21. Long Non-coding RNA NEAT1 as an Emerging Biomarker in Breast and Gynecologic Cancers: a Systematic Overview vol.28, pp.9, 2021, https://doi.org/10.1007/s43032-021-00481-x
  22. Hsa_circ_0001021 regulates intestinal epithelial barrier function via sponging miR-224-5p in ulcerative colitis vol.13, pp.17, 2018, https://doi.org/10.2217/epi-2021-0230
  23. MALAT1 Maintains the Intestinal Mucosal Homeostasis in Crohn’s Disease via the miR-146b-5p-CLDN11/NUMB Pathway vol.15, pp.9, 2021, https://doi.org/10.1093/ecco-jcc/jjab040
  24. Long noncoding RNA distal-less homeobox 2 antisense 1 restrains inflammatory response and apoptosis of periodontal ligament cells by binding with microRNA-330-3p to regulate Ro60, Y RNA binding protei vol.133, pp.None, 2018, https://doi.org/10.1016/j.archoralbio.2021.105298