DOI QR코드

DOI QR Code

Administration of antibiotics contributes to cholestasis in pediatric patients with intestinal failure via the alteration of FXR signaling

  • Xiao, Yongtao (Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University) ;
  • Zhou, Kejun (Shanghai Institute of Pediatric Research) ;
  • Lu, Ying (Shanghai Institute of Pediatric Research) ;
  • Yan, Weihui (Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University) ;
  • Cai, Wei (Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University) ;
  • Wang, Ying (Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University)
  • 투고 : 2018.06.01
  • 심사 : 2018.09.04
  • 발행 : 2018.11.30

초록

The link between antibiotic treatment and IF-associated liver disease (IFALD) is unclear. Here, we study the effect of antibiotic treatment on bile acid (BA) metabolism and investigate the involved mechanisms. The results showed that pediatric IF patients with cholestasis had a significantly lower abundance of BA-biotransforming bacteria than patients without cholestasis. In addition, the BA composition was altered in the serum, feces, and liver of pediatric IF patients with cholestasis, as reflected by the increased proportion of primary BAs. In the ileum, farnesoid X receptor (FXR) expression was reduced in patients with cholestasis. Correspondingly, the serum FGF19 levels decreased significantly in patients with cholestasis. In the liver, the expression of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), increased noticeably in IF patients with cholestasis. In mice, we showed that oral antibiotics (gentamicin, GM or vancomycin, VCM) reduced colonic microbial diversity, with a decrease in both Gram-negative bacteria (GM affected Eubacterium and Bacteroides) and Gram-positive bacteria (VCM affected Clostridium, Bifidobacterium and Lactobacillus). Concomitantly, treatment with GM or VCM decreased secondary BAs in the colonic contents, with a simultaneous increase in primary BAs in plasma. Moreover, the changes in the colonic BA profile especially that of tauro-beta-muricholic acid ($T{\beta}MCA$), were predominantly associated with the inhibition of the FXR and further altered BA synthesis and transport. In conclusion, the administration of antibiotics significantly decreased the intestinal microbiota diversity and subsequently altered the BA composition. The alterations in BA composition contributed to cholestasis in IF patients by regulating FXR signaling.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Shanghai, Shanghai Health and Family Planning Commission

참고문헌

  1. Lacaille, F. et al. Intestinal failure-associated liver disease: a position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J. Pediatr. Gastroenterol. Nutr. 60, 272-283 (2015). https://doi.org/10.1097/MPG.0000000000000586
  2. Wessel, J., Kotagal, M. & Helmrath, M. A. Management of Pediatric Intestinal Failure. Adv. Pediatr. 64, 253-267 (2017). https://doi.org/10.1016/j.yapd.2017.03.010
  3. Xiao, Y. T., Cao, Y., Zhou, K. J., Lu, L. N. & Cai, W. Altered systemic bile acid homeostasis contributes to liver disease in pediatric patients with intestinal failure. Sci. Rep. 6, 39264 (2016). https://doi.org/10.1038/srep39264
  4. Pereira-Fantini, P. M. et al. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J. Hepatol. 61, 1115-1125 (2014). https://doi.org/10.1016/j.jhep.2014.06.025
  5. Mutanen, A., Lohi, J., Heikkila, P., Jalanko, H. & Pakarinen, M. P. Loss of ileum decreases serum fibroblast growth factor 19 in relation to liver inflammation and fibrosis in pediatric onset intestinal failure. J. Hepatol. 62, 1391-1397 (2015). https://doi.org/10.1016/j.jhep.2015.01.004
  6. Hudgins, J. D., Goldberg, V., Fell, G. L., Puder, M. & Eisenberg, M. A. Reducing time to antibiotics in children with intestinal failure, central venous line, and fever. Pediatrics 140, e20171201 (2017). https://doi.org/10.1542/peds.2017-1201
  7. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174-180 (2011). https://doi.org/10.1038/nature09944
  8. Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu. Rev. Med. 62, 361-380 (2011). https://doi.org/10.1146/annurev-med-012510-175505
  9. Marchesi, J. R. et al. The gutmicrobiota and host health: a new clinical frontier. Gut 65, 330-339 (2016). https://doi.org/10.1136/gutjnl-2015-309990
  10. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577-591 (2015). https://doi.org/10.1038/nrendo.2015.128
  11. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182-190 (2015). https://doi.org/10.1038/nrendo.2014.210
  12. Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, (Suppl 1), 4554-4561 (2011). https://doi.org/10.1073/pnas.1000087107
  13. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 6, e280 (2008). https://doi.org/10.1371/journal.pbio.0060280
  14. Vrieze, A. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60, 824-831 (2014). https://doi.org/10.1016/j.jhep.2013.11.034
  15. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225-235 (2013). https://doi.org/10.1016/j.cmet.2013.01.003
  16. Ridlon, J. M., Kang, D. J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241-259 (2006). https://doi.org/10.1194/jlr.R500013-JLR200
  17. Russell, D. W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137-174 (2003). https://doi.org/10.1146/annurev.biochem.72.121801.161712
  18. Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111-128 (2018). https://doi.org/10.1038/nrgastro.2017.119
  19. Sinal, C. J. et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731-744 (2000). https://doi.org/10.1016/S0092-8674(00)00062-3
  20. Chiang, J. Y. Bile acids: regulation of synthesis. J. Lipid Res. 50, 1955-1966 (2009). https://doi.org/10.1194/jlr.R900010-JLR200
  21. De Fabiani, E. et al. The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J. Biol. Chem. 276, 30708-30716 (2001). https://doi.org/10.1074/jbc.M103270200
  22. Green, R. M., Beier, D. & Gollan, J. L. Regulation of hepatocyte bile salt transporters by endotoxin and inflammatory cytokines in rodents. Gastroenterology 111, 193-198 (1996). https://doi.org/10.1053/gast.1996.v111.pm8698199
  23. Kosters, A. & Karpen, S. J. The role of inflammation in cholestasis: clinical and basic aspects. Semin. Liver Dis. 30, 186-194 (2010). https://doi.org/10.1055/s-0030-1253227
  24. Botham, K. M. & Boyd, G. S. The metabolism of chenodeoxycholic acid to betamuricholic acid in rat liver. Eur. J. Biochem. 134, 191-196 (1983). https://doi.org/10.1111/j.1432-1033.1983.tb07550.x
  25. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678-693 (2008). https://doi.org/10.1038/nrd2619
  26. Meier, P. J. & Stieger, B. Bile salt transporters. Annu. Rev. Physiol. 64, 635-661 (2002). https://doi.org/10.1146/annurev.physiol.64.082201.100300
  27. Uppal, H. et al. Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41, 168-176 (2005). https://doi.org/10.1002/hep.20512
  28. Zollner, G., Marschall, H. U., Wagner,M. & Trauner, M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol. Pharm. 3, 231-251 (2006). https://doi.org/10.1021/mp060010s
  29. Trauner, M. & Boyer, J. L. Bile salt transporters: molecular characterization, function, and regulation. Physiol. Rev. 83, 633-671 (2003). https://doi.org/10.1152/physrev.00027.2002
  30. Gadaleta, R. M., Cariello, M., Sabba, C. & Moschetta, A. Tissue-specific actions of FXR in metabolism and cancer. Biochim. Biophys. Acta 1851, 30-39 (2015). https://doi.org/10.1016/j.bbalip.2014.08.005
  31. Gura, K. M. et al. Pediatric Intestinal Failure-Associated Liver Disease: Challenges in Identifying Clinically Relevant Biomarkers. J. Parenter. Enter. Nutr. 42, 455-462 (2018).
  32. Stueck, A. E. Intestinal failure-associated liver disease: risks and regression. Liver. Int. 38, 35-37 (2018). https://doi.org/10.1111/liv.13592
  33. Wang, P. et al. Alterations in intestinal microbiota relate to intestinal failureassociated liver disease and central line infections. J. Pediatr. Surg. 52, 1318-1326 (2017). https://doi.org/10.1016/j.jpedsurg.2017.04.020
  34. Al-Shahwani, N. H. & Sigalet, D. L. Pathophysiology, prevention, treatment, and outcomes of intestinal failure-associated liver disease. Pediatr. Surg. Int. 33, 405-411 (2017). https://doi.org/10.1007/s00383-016-4042-7
  35. Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332-338 (2014). https://doi.org/10.1097/MOG.0000000000000057
  36. Kisiela, M., Skarka, A., Ebert, B. & Maser, E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J. Steroid Biochem. Mol. Biol. 129, 31-46 (2012). https://doi.org/10.1016/j.jsbmb.2011.08.002
  37. Parks, D. J. et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 1365-1368 (1999). https://doi.org/10.1126/science.284.5418.1365
  38. Kim, I. et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664-2672 (2007). https://doi.org/10.1194/jlr.M700330-JLR200

피인용 문헌

  1. Spontaneous liver disease in wild-type C57BL/6JOlaHsd mice fed semisynthetic diet vol.15, pp.9, 2018, https://doi.org/10.1371/journal.pone.0232069
  2. Molecular physiology of bile acid signaling in health, disease, and aging vol.101, pp.2, 2018, https://doi.org/10.1152/physrev.00049.2019
  3. Antibiotics Treatment Modulates Microglia-Synapses Interaction vol.10, pp.10, 2018, https://doi.org/10.3390/cells10102648
  4. Importance of Bile Composition for Diagnosis of Biliary Obstructions vol.26, pp.23, 2018, https://doi.org/10.3390/molecules26237279
  5. Physiological Role of Bile Acids Modified by the Gut Microbiome vol.10, pp.1, 2018, https://doi.org/10.3390/microorganisms10010068