Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Sievert, K. D. et al. Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295-300 (2009). https://doi.org/10.1007/s00345-009-0395-z
- Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30 (2018). https://doi.org/10.3322/caac.21442
- Hsu, I., Vitkus, S., Da, J. & Yeh, S. Role of oestrogen receptors in bladder cancer development. Nat. Rev. Urol. 10, 317-326 (2013). https://doi.org/10.1038/nrurol.2013.53
- Hsu, I. et al. Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo. Oncotarget 5, 7917-7935 (2014).
- Hsu, I. et al. Suppression of ERbeta signaling via ERbeta knockout or antagonist protects against bladder cancer development. Carcinogenesis 35, 651-661 (2014). https://doi.org/10.1093/carcin/bgt348
- Yang H., Fang F., Chang R., Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting TGFBR1 and FGF9 in hepatocellular carcinoma. Hepatology. 58, 205-217 (2013).
- Liu X., et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res. 32, 96 (2013). https://doi.org/10.1186/1756-9966-32-96
- Zhang S., et al. MicroRNA-24 upregulation inhibits proliferation, metastasis and induces apoptosis in bladder cancer cells by targeting CARMA3. Int. J. Oncol. 47,1351-1360 (2015). https://doi.org/10.3892/ijo.2015.3117
- Barbato, S., Solaini, G. & Fabbri, M. MicroRNAs in oncogenesis and tumor suppression. Int. Rev. Cell. Mol. Biol. 333, 229-268 (2017).
- Paris, O. et al. Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31, 4196-4206 (2012). https://doi.org/10.1038/onc.2011.583
- Zhou, J. et al. Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies. Oncogene 35, 4663-4674 (2016). https://doi.org/10.1038/onc.2016.4
- Liao, H. et al. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol. Lett. 10, 2055-2062 (2015). https://doi.org/10.3892/ol.2015.3551
- Liu, L., Xu, C., Hsieh, J. T., Gong, J. & Xie, D. DAB2IP in cancer. Oncotarget 7, 3766-3776 (2016).
- Zhang, X. et al. Low expression of DAB2IP contributes to malignant development and poor prognosis in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 27, 1117-1125 (2012). https://doi.org/10.1111/j.1440-1746.2011.07049.x
- Wu, K. et al. DAB2IP regulates the chemoresistance to pirarubicin and tumor recurrence of non-muscle invasive bladder cancer through STAT3/Twist1/Pglycoprotein signaling. Cell. Signal. 27, 2515-2523 (2015). https://doi.org/10.1016/j.cellsig.2015.09.014
- Shen, Y. J. et al. Downregulation of DAB2IP results in cell proliferation and invasion and contributes to unfavorable outcomes in bladder cancer. Cancer Sci. 105, 704-712 (2014). https://doi.org/10.1111/cas.12407
- Ou, Z. et al. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget 6, 26065-26078 (2015).
- Yoshino, H. et al. Aberrant expression of microRNAs in bladder cancer. Nat. Rev. Urol. 10, 396-404 (2013). https://doi.org/10.1038/nrurol.2013.113
- Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94-108 (2009). https://doi.org/10.1038/nrg2504
- Vlachos, I. S. et al. DIANA-TarBasev7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 43, D153-D159 (2015). https://doi.org/10.1093/nar/gku1215
- Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
- Sonpavde, G. et al. Efficacy of selective estrogen receptor modulators in nude mice bearing human transitional cell carcinoma. Urology 69, 1221-1226 (2007). https://doi.org/10.1016/j.urology.2007.02.041
- Miyamoto, H. et al. Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU Int. 109, 1716-1726 (2012). https://doi.org/10.1111/j.1464-410X.2011.10706.x
-
Rao Q. et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ER
${\beta}$ /CCL2/CCR2 EMT/MMP9 signals. Oncotarget. 7, 7842-7855 (2016). -
Tao L. et al. Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor
${\beta}$ /IL-1/c-MET signals. Cancer Lett. 430, 215-223(2018). https://doi.org/10.1016/j.canlet.2018.03.045 - Catto, J. W. et al. Distinct microRNA alterations characterize high- and lowgrade bladder cancer. Cancer Res. 69, 8472-8481 (2009). https://doi.org/10.1158/0008-5472.CAN-09-0744
- Xiong Y. et al. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR). Cell Physiol Biochem. 43, 405-418 (2017). https://doi.org/10.1159/000480419
- Guancial, E. A., Bellmunt, J., Yeh, S., Rosenberg, J. E. & Berman, D. M. The evolving understanding of microRNA in bladder cancer. Urol. Oncol. 32, 41 e31-e40 (2014). https://doi.org/10.1016/j.urolonc.2013.04.014
- Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095 (2004). https://doi.org/10.1158/0008-5472.CAN-03-3773
- Lin, H. Y., Chiang, C. H. & Hung, W. C. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br. J. Cancer 109, 731-738 (2013). https://doi.org/10.1038/bjc.2013.349
- Shigoka, M. et al. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol. Int. 60, 351-357 (2010). https://doi.org/10.1111/j.1440-1827.2010.02526.x
- Chen, H., Tu, S. W. & Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437-22444 (2005). https://doi.org/10.1074/jbc.M501379200
- Zhang, T., Shen, Y., Chen, Y., Hsieh, J. T. & Kong, Z. The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect. Int. J. Radiat. Biol. 91, 368-378 (2015).
Cited by
- ERα-mediated alterations in circ_0023642 and miR-490-5p signaling suppress bladder cancer invasion vol.10, pp.9, 2018, https://doi.org/10.1038/s41419-019-1827-3
- Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in bladder urothelial carcinoma vol.19, pp.1, 2019, https://doi.org/10.1186/s12935-019-1052-2
- Exosomal miR-92a Concentration in the Serum of Shift Workers vol.10, pp.2, 2018, https://doi.org/10.3390/app10020430
- Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer vol.25, pp.3, 2018, https://doi.org/10.3390/molecules25030575
- Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC vol.11, pp.5, 2018, https://doi.org/10.1038/s41419-020-2486-0
- Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor vol.12, pp.8, 2018, https://doi.org/10.3390/cancers12082162
- Cutting the Brakes on Ras—Cytoplasmic GAPs as Targets of Inactivation in Cancer vol.12, pp.10, 2020, https://doi.org/10.3390/cancers12103066
- An overview on precision therapy in bladder cancer vol.5, pp.5, 2018, https://doi.org/10.1080/23808993.2020.1801346
- Development of a 15-Gene Signature Model as a Prognostic Tool in Sex Hormone-Dependent Cancers vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3676107
- The Role of Estrogen Receptors in Urothelial Cancer vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.643870
- Association Between Estrogen Receptors and GATA3 in Bladder Cancer: A Systematic Review and Meta-Analysis of Their Clinicopathological Significance vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.684140
- Endocrine-disrupting effects of bisphenols on urological cancers vol.195, pp.None, 2021, https://doi.org/10.1016/j.envres.2020.110485
- Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy vol.10, pp.5, 2021, https://doi.org/10.3390/cells10051169
- The Inequality of Females in Bladder Cancer vol.129, pp.12, 2018, https://doi.org/10.1111/apm.13183