DOI QR코드

DOI QR Code

Estrogen promotes the onset and development of idiopathic scoliosis via disproportionate endochondral ossification of the anterior and posterior column in a bipedal rat model

  • Zheng, Shuhui (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Zhou, Hang (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Gao, Bo (Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University) ;
  • Li, Yongyong (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Liao, Zhiheng (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Zhou, Taifeng (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Lian, Chengjie (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Wu, Zizhao (Department of Orthopaedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University) ;
  • Su, Deying (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Wang, Tingting (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Su, Peiqiang (Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University) ;
  • Xu, Caixia (Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University)
  • 투고 : 2018.02.02
  • 심사 : 2018.06.27
  • 발행 : 2018.11.30

초록

This study aimed to verify the effects of estrogen on the onset and development of adolescent idiopathic scoliosis and the mechanisms associated with these effects by constructing a pubescent bipedal rat model. Experiments were conducted to investigate whether scoliosis progression was prevented by a Triptorelin treatment. One hundred twenty bipedal rats were divided into female, OVX (ovariectomy), OVX + E2, Triptorelin, sham, and male groups. According to a spinal radiographic analysis, the scoliosis rates and curve severity of the female and OVX + E2 groups were higher than those in the OVX, Triptorelin, and male groups. The measurements obtained from the sagittal plane of thoracic vertebrae CT confirmed a relatively slower growth of the anterior elements and a faster growth of the posterior elements between T11 and T13 in the female and OVX + E2 groups than in the OVX and Triptorelin groups. Histomorphometry and immunohistochemistry revealed a significantly longer hypertrophic zone of the vertebral cartilage growth plates that expressed more type X collagen and less type II collagen in the OVX and Triptorelin groups than in the female and OVX + E2 groups. Ki67 immunostaining confirmed an increase in the proliferation of vertebral growth plate chondrocytes in the OVX group compared with the female and OVX + E2 groups. In conclusion, estrogen obviously increased the incidence of scoliosis and curve severity in pubescent bipedal rats. The underlying mechanism may be a loss of coupling of the endochondral ossification between the anterior and posterior columns. Triptorelin decreased the incidence of scoliosis and curve magnitudes in bipedal female rats.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Guangdong Natural Science Foundation

참고문헌

  1. Ahn, U. M. et al. The etiology of adolescent idiopathic scoliosis. Am. J. Orthop. 31, 387-395 (2002).
  2. Lowe, T. G., Edgar, M., Margulies, J. Y., Miller, N. H., Raso, V. J. & Reinker, K. A. Etiology of idiopathic scoliosis: current trends in research. J. Bone Jt. Surg. Am. 82-A, 1157-1168 (2000).
  3. Akel, I., Demirkiran, G., Alanay, A., Karahan, S., Marcucio, R. & Acaroglu, E. The effect of calmodulin antagonists on scoliosis: bipedal C57BL/6 mice model. Eur. Spine J. 18, 499-505 (2009). https://doi.org/10.1007/s00586-009-0912-1
  4. Cowell, H. R., Hall, J. N. & MacEwen, G. D. Genetic aspects of idiopathic scoliosis. Clin. Orthop. Relat. Res. 86, 121-131 (1972). https://doi.org/10.1097/00003086-197207000-00018
  5. Fischer, R. L. & DeGeorge, F. V. Idiopathic scoliosis: an investigation of genetic and environmental factors. J. Bone Jt. Surg. 49, 1005-1006 (1976).
  6. Kazmin, A. I. & Merkorieva, R. V. Role of disturbance of glucosaminoglycaine metabolism in the pathogenesis of scoliosis. Ortop. Travmatol. Protez. 32, 87-91 (1971).
  7. Pedrini, V. A., Ponset, I. V. & Dohrman, S. C. Glycosaminoglycans of intervertebral disc in idiopathic scoliosis. J. Lab. Clin. Med. 82, 938-950 (1973).
  8. Dickson, R. A., Lawton, J. O., Archer, I. A. & Butt, W. P. The pathogenesis of idiopathic scoliosis: biplanar spinal asymmetry. J. Bone Jt. Surg. Br. 66, 8-15 (1984).
  9. Schultz, A. B. A biomechanical view of scoliosis. Spine 1, 162-171 (1976). https://doi.org/10.1097/00007632-197609000-00007
  10. Bararack, R. L., Wyatt, M. P., Whitecloud, T. S., Burk, S. W., Robert, J. W. & Brinker, M. R. Vibratory hypersensitivity in idiopathic scoliosis. J. Pediatr. Orthop. 8, 389-395 (1988). https://doi.org/10.1097/01241398-198807000-00002
  11. Chuma, A., Kitahara, H., Minami, S., Goto, S., Takaso, M. & Moriya, H. Structural scoliosis model in dogs with experimentally induced syringomyelia. Spine 22, 589-594 (1997). https://doi.org/10.1097/00007632-199703150-00002
  12. Kindsfater, K., Lowe, T., Lawellin, D., Weinstein, D. & Akmakjian, J. Levels of platelet calmodulin for the prediction of progression and severity of adolescent idiopathic scoliosis. J. Bone Jt. Surg. 76, 1186-1192 (1994). https://doi.org/10.2106/00004623-199408000-00009
  13. Letellier, K. et al. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J. Pineal Res. 45, 383-393 (2008). https://doi.org/10.1111/j.1600-079X.2008.00603.x
  14. Leboeuf, D., Letellier, K., Alos, N., Edery, P. & Moldovan, F. Do estrogens impact adolescent idiopathic scoliosis? Trends Endocrinol. Metab. 20, 147-152 (2009). https://doi.org/10.1016/j.tem.2008.12.004
  15. Iwamuro, S. et al. Teratogenic and anti-metamorphic effects of bisphenol A on embryonic and larval Xenopus laevis. Gen. Comp. Endocrinol. 133, 189-198 (2003). https://doi.org/10.1016/S0016-6480(03)00188-6
  16. Kulis, A. et al. Participation of sex hormones in multifactorial pathogenesis of adolescent idiopathic scoliosis. Int. Orthop. 39, 1227-1236 (2015). https://doi.org/10.1007/s00264-015-2742-6
  17. Man, G. C. et al. A review of pinealectomy-induced melatonin-deficient animal models for the study of etiopathogenesis of adolescent idiopathic scoliosis. Int. J. Mol. Sci. 15, 16484-16499 (2014). https://doi.org/10.3390/ijms150916484
  18. Wu, T. et al. Role of enhanced central leptin activity in a Scoliosis model created in bipedal amputated mice. Spine (Phila. Pa 1976) 40, E1041-E1045 (2015). https://doi.org/10.1097/BRS.0000000000001060
  19. Dede, O., Akel, I., Demirkiran, G., Yalcin, N., Marcucio, R. & Acaroglu, E. Is decreased bone mineral density associated with development of scoliosis? A bipedal osteopenic rat model. Scoliosis 6, 24 (2011). https://doi.org/10.1186/1748-7161-6-24
  20. Guo, X., Chau, W. W., Chan, Y. L. & Cheng, J. C. Relative anterior spinal overgrowth in adolescent idiopathic scoliosis. Results of disproportionate endochondral-membranous bone growth. J. Bone Jt. Surg. Br. 85, 1026-1031 (2003).
  21. Xiong, B., Sevastik, B., Willers, U., Sevastick, J. & Hedlund, R. Structural vertebral changes in the horizontal plane in idiopathic scoliosis and the long-term corrective effect of spine instrumentation. Eur. Spine J. 4, 11-14 (1995). https://doi.org/10.1007/BF00298411
  22. Haas, S. L. Growth in length of the vertebrae. Arch. Surg. Chic. 38, 245-249 (1939). https://doi.org/10.1001/archsurg.1939.01200080057004
  23. Leone Roberti Maggiore, U. et al. Triptorelin for the treatment of endometriosis. Expert Opin. Pharmacother. 15, 1153-1179 (2014). https://doi.org/10.1517/14656566.2014.916279
  24. Boudreau, M. et al. Utility of morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of estrogenic and anti estrogenic endocrine disruption. Environ. Toxicol. Chem. 23, 415-425 (2004). https://doi.org/10.1897/03-50
  25. Sanders, J. O., Browne, R. H., McConnell, S. J., Margraf, S. A., Cooney, T. E. & Finegold, D. N. Maturity assessment and curve progression in girls with idiopathic scoliosis. J. Bone Jt. Surg. Am. 89, 64-73 (2007). https://doi.org/10.2106/JBJS.F.00067
  26. Raczkowski, J. W. The concentrations of testosterone and estradiol in girls with adolescent idiopathic scoliosis. Neuroendocrinol. Lett. 28, 302-304 (2007).
  27. Demirkiran, G., Dede, O., Yalcin, N., Akel, I., Marcucio, R. & Acaroglu, E. Selective estrogen receptor modulation prevents scoliotic curve progression: radiologic and histomorphometric study on a bipedal C57Bl6 mice model. Eur. Spine J. 23, 455-462 (2014). https://doi.org/10.1007/s00586-013-3072-2
  28. Kronenberg, H. M. Developmental regulation of the growth plate. Nature 423, 332-336 (2003). https://doi.org/10.1038/nature01657
  29. Farnum, Cornelia, E., Wilsman & Norman, J. Converting a differentiation cascade into longitudinal growth: stereology and analysis of transgenic animals as tools for understanding growth plate function. Curr. Opin. Orthop. 12, 428-433 (2001). https://doi.org/10.1097/00001433-200110000-00011
  30. Zhang, H. et al. Intramembranous ossification and endochondral ossification are impaired differently between glucocorticoid-induced osteoporosis and estrogen deficiency-induced osteoporosis. Sci. Rep. 8, 3867 (2018). https://doi.org/10.1038/s41598-018-22095-1
  31. Nilsson, O., Marino, R., De Luca, F., Phillip, M. & Baron, J. Endocrine regulation of the growth plate. Horm. Res. 64, 157-165 (2005).
  32. Illien-Junger, S., Torre, O. M., Kindschuh, W. F., Chen, X., Laudier, D. M. & Iatridis, J. C. AGEs induce ectopic endochondral ossification in intervertebral discs. Eur. Cell. Mater. 32, 257-270 (2016). https://doi.org/10.22203/eCM.v032a17
  33. Borjesson, A. E. et al. The role o-f estrogen receptor ${\alpha}$ in growth plate cartilage for longitudinal bone growth. J. Bone Miner. Res. 25, 2690-2700 (2010). https://doi.org/10.1002/jbmr.156
  34. Zhu, F., Qiu, Y., Yeung, H. Y., Lee, K. M. & Cheng, J. C. Histomorphometric study of the spinal growth plates in idiopathic scoliosis and congenital scoliosis. Pediatr. Int. 48, 591-598 (2006). https://doi.org/10.1111/j.1442-200X.2006.02277.x

피인용 문헌

  1. Changes in circulating cell-free nuclear DNA and mitochondrial DNA of patients with adolescent idiopathic scoliosis vol.20, pp.1, 2018, https://doi.org/10.1186/s12891-019-2869-5
  2. Low Body Mass Index for Early Screening of Adolescent Idiopathic Scoliosis: A Comparison Based on Standardized Body Mass Index Classifications vol.14, pp.1, 2018, https://doi.org/10.1016/j.anr.2019.12.003
  3. The severity and direction prevalence rate of patients with a mandible deviation compared to Cobb’s angle vol.54, pp.2, 2018, https://doi.org/10.20473/j.djmkg.v54.i2.p74-77
  4. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis vol.35, pp.9, 2018, https://doi.org/10.1096/fj.202100759r
  5. Apoptosis of endplate chondrocytes in cervical kyphosis is associated with chronic forward flexed neck: an in vivo rat bipedal walking model vol.16, pp.None, 2018, https://doi.org/10.1186/s13018-020-02124-4