Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Feng, X. &McDonald, J. M. Disorders of bone remodeling. Annu Rev. Pathol. 6, 121-145 (2011). https://doi.org/10.1146/annurev-pathol-011110-130203
- Nakashima, T., Hayashi, M. & Takayanagi, H. Newinsights into osteoclastogenic signaling mechanisms. Trends Endocrinol. Metab. 23, 582-590 (2012). https://doi.org/10.1016/j.tem.2012.05.005
- Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259-272 (2012). https://doi.org/10.1016/j.stem.2012.02.003
- Kitaori, T. et al. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum. 60, 813-823 (2009). https://doi.org/10.1002/art.24330
- Tewari, D. et al. Ovariectomized rats with established osteopenia have diminished mesenchymal stem cells in the bone marrow and impaired homing, osteoinduction and bone regeneration at the fracture site. Stem Cell Rev. 11, 309-321 (2015). https://doi.org/10.1007/s12015-014-9573-5
-
Crane, J. L. & Cao, X. Bone marrow mesenchymal stem cells and TGF-
${\beta}$ signaling in bone remodeling. J. Clin. Invest 124, 466-472 (2014). https://doi.org/10.1172/JCI70050 - Crane, J. L. & Cao, X. Function of Matrix IGF-1 in coupling bone resorption and formation. J. Mol. Med. 92, 107-115 (2014). https://doi.org/10.1007/s00109-013-1084-3
- Kular, J., Tickner, J., Chim, S. M. & Xu, J. An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45, 863-873 (2012). https://doi.org/10.1016/j.clinbiochem.2012.03.021
-
Bismar, H. et al. Transforming growth factor
${\beta}$ (TGF-${\beta}$ ) levels in the conditioned media of human bone cells: relationship to donor age, bone volume, and concentration of TGF-${\beta}$ in human bone matrix in vivo. Bone 24, 565-569 (1999). https://doi.org/10.1016/S8756-3282(99)00082-4 -
Linkhart, T. A., Mohan, S. & Baylink, D. J. Growth factors for bone growth and repair: IGF, TGF
${\beta}$ and BMP. Bone 19 (c), S1-S12 (1996). https://doi.org/10.1016/S8756-3282(96)00138-X - Seyedin, S. M., Thomas, T. C., Thompson, A. Y., Rosen, D. M. & Piez, K. A. Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc. Natl Acad. Sci. U.S.A. 82, 2267-2271 (1985). https://doi.org/10.1073/pnas.82.8.2267
-
Tang, Y. et al. TGF-
${\beta}$ 1-induced migration of bone mesenchymal stem cells couples bone resorption and formation. Nat. Med. 15, 757-765 (2009). https://doi.org/10.1038/nm.1979 - Ponte, A. L. et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745 (2007). https://doi.org/10.1634/stemcells.2007-0054
- Silver, I. A., Murrills, R. J. & Etherington, D. J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 175, 266-276 (1988). https://doi.org/10.1016/0014-4827(88)90191-7
- Sun, X., Kishore, V., Fites, K. & Akkus, O. Osteoblasts detect pericellular calcium concentration increase via neomycin-sensitive voltage gated calcium channels. Bone 51, 860-867 (2012). https://doi.org/10.1016/j.bone.2012.08.116
- Chai, Y. C. et al. Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater. 8, 3876-3887 (2012). https://doi.org/10.1016/j.actbio.2012.07.002
- Hu, F. et al. Elevation of extracellular Ca(2+) induces store-operated calcium entry via calcium-sensing receptors: a pathway contributes to the proliferation of osteoblasts. PLoS ONE 9, e107217 (2014). https://doi.org/10.1371/journal.pone.0107217
- Maeno, S. et al. The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 4847-4855 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.006
- Nakamura, S. et al. Effect of calcium ion concentrations on osteogenic differentiation and hematopoietic stem cell niche-related protein expression in osteoblasts. Tissue Eng. Part A 16, 2467-2473 (2010). https://doi.org/10.1089/ten.tea.2009.0337
- Barradas, A. M. et al. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33, 3205-3215 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.020
- Gonzalez-Vazquez, A., Planell, J. A. & Engel, E. Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells. Acta Biomater. 10, 2824-2833 (2014). https://doi.org/10.1016/j.actbio.2014.02.004
-
Hashimoto, R. et al. Increased extracellular and intracellular
$Ca^{2+}$ lead to adipocyte accumulation in bone marrow stromal cells by different mechanisms. Biochem Biophys. Res. Commun. 457, 647-652 (2015). https://doi.org/10.1016/j.bbrc.2015.01.042 - Lei, Q. et al. Proteomic analysis of the effect of extracellular calcium ions on human mesenchymal stem cells: Implications for bone tissue engineering. Chem. Biol. Interact. 233, 139-146 (2015). https://doi.org/10.1016/j.cbi.2015.03.021
- Mellor, L. F. et al. Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng. Part A 21, 2323-2333 (2015). https://doi.org/10.1089/ten.tea.2014.0572
- Jeong, B. C., Kang, I. H., Hwang, Y. C., Kim, S. H. & Koh, J. T. MicroRNA-194 reciprocally stimulates osteogenesis and inhibits adipogenesis via regulating COUP-TFII expression. Cell Death Dis. 5, e1532 (2014). https://doi.org/10.1038/cddis.2014.485
- Lee, M. N. et al. FGF2 stimulates COUP-TFII expression via the MEK1/2 pathway to inhibit osteoblast differentiation in C3H10T1/2 cells. PLoS One 11, e0159234 (2016). https://doi.org/10.1371/journal.pone.0159234
- Cheng, S. et al. Effects of extracellular calcium on viability and osteogenic differentiation of bone marrow stromal cells in vitro. Hum. Cell 26, 114-120 (2013). https://doi.org/10.1007/s13577-012-0041-8
- Kahles, F., Findeisen, H. M. & Bruemmer, D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol. Metab. 3, 384-393 (2014). https://doi.org/10.1016/j.molmet.2014.03.004
- Wei, R., Wong, J. P. C. & Kwok, H. F. Osteopontin-a promising biomarker for cancer therapy. J. Cancer 8, 2173-2183 (2017). https://doi.org/10.7150/jca.20480
- Chen, Q. et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32, 327-337 (2014). https://doi.org/10.1002/stem.1567
- Frederick, T. J., Min, J., Altieri, S. C., Mitchell, N. E. & Wood, T. L. Synergistic induction of cyclin D1 in oligodendrocyte progenitor cells by IGF-I and FGF-2 requires differential stimulation of multiple signaling pathways. Glia 55, 1011-1022 (2007). https://doi.org/10.1002/glia.20520
- Denhardt, D. T. & Noda, M. Osteopontin expression and function: Role in bone remodeling. J. Cell Biochem Suppl. 30-31, 92-102 (1998).
-
Hu, D. D., Lin, E. C., Kovach, N. L., Hoyer, J. R. & Smith, J. W. A biochemical characterization of the binding of osteopontin to integrins
${\alpha}$ v${\beta}$ 1 and${\alpha}$ v${\beta}$ 5. J. Biol. Chem. 270, 26232-26238 (1995). https://doi.org/10.1074/jbc.270.44.26232 - Wang, K. X. & Denhardt, D. T. Osteopontin: Role in immune regulation and stress responses. Cytokine Growth Factor Rev. 19, 333-345 (2008). https://doi.org/10.1016/j.cytogfr.2008.08.001
-
Zou, C. et al. Osteopontin promotes mesenchymal stem cell migration and lessens cell stiffness via Integrin
${\beta}$ 1, FAK, and ERK pathways. Cell Biochem Biophys. 65, 455-462 (2013). https://doi.org/10.1007/s12013-012-9449-8 -
Zou, C., Song, G., Luo, Q., Yuan, L. & Yang, L. Mesenchymal stem cells require integrin
${\beta}$ 1 for directed migration induced by osteopontin in vitro. Vitr. Cell Dev. Biol. Anim. 47, 241-250 (2011). https://doi.org/10.1007/s11626-010-9377-0 -
Hu, D. D., Hoyer, J. R. & Smith, J. W. Ca2+ suppresses cell adhesion to osteopontin by attenuating binding affinity for integrin
${\alpha}$ v${\beta}$ 3. J. Bio Chem. 270, 9917-9925 (1995). https://doi.org/10.1074/jbc.270.17.9917 - Goltzman, D. & Hendy, G. N. The calcium-sensing receptor in bone-mechanistic and therapeutic insights. Nat. Rev. Endocrinol. 11, 298-307 (2015). https://doi.org/10.1038/nrendo.2015.30
- Hofer, A. M. & Brown, E. M. Extracellular calcium sensing and signalling. Nat. Rev. Mol. Cell Biol. 4, 530-538 (2003). https://doi.org/10.1038/nrm1154
- Tharmalingam, S. & Hampson, D. R. The calcium-sensing receptor and integrins in cellular differentiation and migration. Front Physiol. 7, 190 (2016).
- Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calciumsensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal 1, ra1 (2008).
- Marie, P. J. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 46, 571-576 (2010). https://doi.org/10.1016/j.bone.2009.07.082
- Dvorak, M. M. & Riccardi, D. Ca2+as an extracellular signal in bone. Cell Calcium 35, 249-255 (2004). https://doi.org/10.1016/j.ceca.2003.10.014
- Dvorak-Ewell, M. M. et al. Osteoblast extracellular Ca(2+)-sensing receptor regulates bone development, mineralization and turnover. J. Bone Miner. Res 26, 2935-2947 (2011). https://doi.org/10.1002/jbmr.520
- Gabusi, E. et al. Extracellular calcium chronically induced human osteoblasts effects: Specific modulation of osteocalcin and collagen type XV. J. Cell Physiol. 227, 3151-3161 (2012). https://doi.org/10.1002/jcp.24001
- Tada, H. et al. Elevated extracellular calcium increases expression of bone morphogenetic protein-2 gene via a calcium channel and ERK pathway in human dental pulp cells. Biochem Biophys. Res Commun. 394, 1093-1097 (2010). https://doi.org/10.1016/j.bbrc.2010.03.135
- Wagner, A. S. et al. Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium with special regard to connexin 43. Ann. Anat. 209, 18-24 (2017). https://doi.org/10.1016/j.aanat.2016.09.005
- Jung, H., Best, M. & Akkus, O. Microdamage induced calcium efflux from bone matrix activates intracellular calcium signaling in osteoblasts via Ltype and T-type voltage-gated calcium channels. Bone 76, 88-96 (2015). https://doi.org/10.1016/j.bone.2015.03.014
- Cummings, L. J., Snyder, M. A. and Brisack, K. Methods in enzymology. in Protein Chromatography on Hydroxyapatite Columns (eds Burgess, R. R. & Deutscher, M. P.) Ch. 24, 387-404 (Academic Press, San Diego, CA, 2009).
- Yang, H., Curinga, G. & Giachelli, C. M. Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro. Kidney Int. 66, 2293-2299 (2004). https://doi.org/10.1111/j.1523-1755.2004.66015.x
- Marcondes, M. C. G., Poling, M., Watry, D. D., Hall, D. & Fox, H. S. In vivo osteopontin-induced macrophage accumulation is dependent on CD44 expression. Cell. Immunol. 254, 56-62 (2008). https://doi.org/10.1016/j.cellimm.2008.06.012
- David, T. D. & Masaki, N. Osteopontin expression and function: role in bone remodeling. J. Cell Biochem Suppl. 30,31, 92-102 (1998). https://doi.org/10.1002/(SICI)1097-4644(1998)72:30/31+<92::AID-JCB13>3.0.CO;2-A
- Gross, T. S., King, K. A., Rabaia, N. A., Pathare, P. & Srinvasan, S. Upregulation of Osteopontin by osteocytes deprived of mechanical loading or oxygen. J. Bone Miner. Res 20, 250-256 (2005).
- Kidd, L. J. et al. Temporal pattern of gene expression and histology of stress fracture healing. Bone 46, 369-378 (2010). https://doi.org/10.1016/j.bone.2009.10.009
Cited by
- A 3D Printable and Bioactive Hydrogel Scaffold to Treat Traumatic Brain Injury vol.29, pp.39, 2018, https://doi.org/10.1002/adfm.201904450
- Aggregation of Nanosized Hydroxyapatite Particles and Inhibition of Cell Adhesion on this Bio-Active Material as Key Factors that Limit its Biointegration vol.64, pp.5, 2018, https://doi.org/10.1134/s0006350919050154
- Defect-related luminescent nanostructured hydroxyapatite promotes mineralization through both intracellular and extracellular pathways vol.9, pp.62, 2019, https://doi.org/10.1039/c9ra06629b
- Combined Effects of Nanoroughness and Ions Produced by Electrodeposition of Mesoporous Bioglass Nanoparticle for Bone Regeneration vol.2, pp.11, 2018, https://doi.org/10.1021/acsabm.9b00859
- Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization vol.21, pp.1, 2018, https://doi.org/10.3390/ijms21010198
- Biocompatibility of Biodentine™ ® with Periodontal Ligament Stem Cells: In Vitro Study vol.8, pp.1, 2018, https://doi.org/10.3390/dj8010017
- Biomedical cell product model for preclinical studies carried out on a large laboratory animal vol.22, pp.1, 2018, https://doi.org/10.15825/1995-1191-2020-1-142-156
- Histological comparison of three apatitic bone substitutes with different carbonate contents in alveolar bone defects in a beagle mandible with simultaneous implant installation vol.108, pp.4, 2018, https://doi.org/10.1002/jbm.b.34492
- Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis vol.8, pp.9, 2020, https://doi.org/10.1039/d0bm00140f
- Poly(ester amide)-Bioactive Glass Hybrid Biomaterials for Bone Regeneration and Biomolecule Delivery vol.3, pp.6, 2020, https://doi.org/10.1021/acsabm.0c00257
- Bone forming ability of recombinant human collagen peptide granules applied with β‐tricalcium phosphate fine particles vol.108, pp.7, 2020, https://doi.org/10.1002/jbm.b.34632
- CaSR-Mediated hBMSCs Activity Modulation: Additional Coupling Mechanism in Bone Remodeling Compartment vol.22, pp.1, 2021, https://doi.org/10.3390/ijms22010325
- Changes in the extracellular microenvironment and osteogenic responses of mesenchymal stem/stromal cells induced by in vitro direct electrical stimulation vol.12, pp.None, 2018, https://doi.org/10.1177/2041731420974147
- In vitro evaluation of novel titania‐containing borate bioactive glass scaffolds vol.109, pp.2, 2018, https://doi.org/10.1002/jbm.a.37012
- Zoledronic Acid-Loaded β-TCP Inhibits Tumor Proliferation and Osteoclast Activation: Development of a Functional Bone Substitute for an Efficient Osteosarcoma Treatment vol.22, pp.4, 2018, https://doi.org/10.3390/ijms22041889
- Calcium channels and their role in regenerative medicine vol.13, pp.4, 2018, https://doi.org/10.4252/wjsc.v13.i4.260
- Cytotoxicity and cell response of preosteoblast in calcium sulfate-augmented PMMA bone cement vol.16, pp.5, 2018, https://doi.org/10.1088/1748-605x/ac1ab5
- Nano and micro-forms of calcium titanate: Synthesis, properties and application vol.8, pp.None, 2018, https://doi.org/10.1016/j.oceram.2021.100177
- Designing a novel CaO-MgO-SiO2-based multiphase bioceramic with adjustable ion dissolution behavior for enhancing osteogenesis vol.3, pp.None, 2022, https://doi.org/10.1016/j.smaim.2021.09.002
- Alveolar ridge preservation in beagle dogs using carbonate apatite bone substitute vol.48, pp.2, 2018, https://doi.org/10.1016/j.ceramint.2021.09.260