DOI QR코드

DOI QR Code

Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation

수치해석적 다짐 작용 연구: 공극률과 퇴적층 두께 변화에 미치는 영향

  • Kim, Yeseul (Faculty of Earth System and Environmental Sciences, Chonnam National University) ;
  • Lee, Changyeol (Faculty of Earth System and Environmental Sciences, Chonnam National University) ;
  • Lee, Eun Young (Faculty of Earth System and Environmental Sciences, Chonnam National University)
  • 김예슬 (전남대학교 지구환경과학부) ;
  • 이창열 (전남대학교 지구환경과학부) ;
  • 이은영 (전남대학교 지구환경과학부)
  • Received : 2018.10.31
  • Accepted : 2018.12.17
  • Published : 2018.12.31

Abstract

To understand the formation and evolution of a sedimentary basin in basin analysis and modelling studies, it is important to analyze the thickness and age range of sedimentary layers infilling a basin. Because the compaction effect reduces the thickness of sedimentary layers during burial, basin modelling studies typically restore the reduced thickness using the relation of porosity and depth (compaction trend). Based on the compilation plots of published compaction trends of representative sedimentary rocks (sandstone, shale and carbonate), this study estimates the compaction trend ranges with exponential curves and equations. Numerical analysis of sedimentary compaction is performed to evaluate the variation of porosity and layer thickness with depth at key curves within the compaction trend ranges. In sandstone, initial porosity lies in a narrow range and decreases steadily with increasing depth, which results in relatively constant thickness variations. For shale, the porosity variation shows two phases which are fast reduction until ~2,000 m in depth and slow reduction at deeper burial, which corresponds to the thickness variation pattern of shale layers. Carbonate compaction is characterized by widely distributed porosity values, which results in highly varying layer thickness with depth. This numerical compaction analysis presents quantitatively the characteristics of porosity and layer thickness variation of each lithology, which influence on layer thickness reconstruction, subsidence and thermal effect analyses to understand the basin formation and evolution. This work demonstrates that the compaction trend is an important factor in basin modelling and underlines the need for appropriate application of porosity data to produce accurate analysis outcomes.

퇴적층의 두께와 형성 기간을 분석하는 것은 퇴적분지의 발달사를 이해하기 위한 분지 해석과 모델링 연구에서 중요하다. 분지 발달 과정에서 퇴적층은 깊이가 증가함에 따라 다짐 작용에 의해 두께가 감소하고, 이 두께 변화는 깊이에 따른 공극률 변화 경향(다짐 작용 경향)을 통해 계산이 가능하다. 이 연구에서는 대표적인 퇴적암상인 사암, 셰일, 탄산염암의 깊이에 따른 공극률 변화 자료를 기반으로, 암상에 따른 다짐 작용 경향의 범위를 지수 함수를 이용하여 정량화하였다. 그리고 다짐 작용이 퇴적층의 공극률과 두께 변화에 미치는 영향을 수치해석적 방법을 이용해 평가하였다. 사암은 초기 공극률의 범위가 좁고 깊이 증가에 따른 공극률 감소 경향이 비교적 일정하여, 다짐 작용에 의한 층두께의 변화 범위가 작다. 셰일은 약 2,000 m 깊이까지 공극률이 빠르게 감소한 후, 급격히 낮아진 감소율을 보이며 이는 퇴적층의 두께 변화에도 반영된다. 탄산염암은 초기 공극률의 범위가 넓고, 깊이 증가에 따른 공극률 감소 양상의 차이가 커서, 결과적으로 다짐 작용에 의해 감소한 퇴적층 두께 차이의 범위도 크게 나타난다. 이 수치 해석적 다짐 작용 연구의 정량적 분석 결과에서 나타난 각 암상들의 다짐 작용에 따른 공극률과 층두께 감소의 특징들은 퇴적분지의 생성과 발달 과정을 이해하기 위해 필요한 퇴적층 두께 복원과 침강사 그리고 지열 작용 분석에 영향을 끼치며, 이는 다짐 작용 경향이 분지 모델링 연구에서 중요한 요소이며 적절한 적용이 필요함을 보여준다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Allen, P.A. and Allen, J.R., 2013, Basin analysis: Principles and application to petroleum play assessment. John Wiley & Sons, Chichester, 632 p.
  2. Anselmetti, F.S. and Eberli, G.P., 1993, Controls on sonic velocity in carbonates. Pure and Applied geophysics, 141, 2-4, 287-323. https://doi.org/10.1007/BF00998333
  3. Athy, L.F., 1930, Density, porosity and compaction of sedimentary rocks. AAPG Bulletin, 14, 1, 1-24.
  4. Bjorkum, P.A., Oelkers, E.H., Nadeau, P.H., Walderhaug, O. and Murphy, W.M., 1998, Porosity Prediction in Quartzose Sandstones as a Function of Time, Temperature, Depth, Stylolite Frequency, and Hydrocarbon Saturation. AAPG Bulletin, 82, 4, 637-648.
  5. Bjorlykke, K., 2014, Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sedimentary Geology, 301, 1-14. https://doi.org/10.1016/j.sedgeo.2013.12.002
  6. Bjorlykke, K., Ramm, M. and Saigal, G.C., 1989, Sandstone diagenesis and porosity modification during basin evolution. Geologische Rundschau, 78, 1, 243-268. https://doi.org/10.1007/BF01988363
  7. Bogg, S., 2012, Principles of Sedimentology and Stratigraphy (5th Edition). Pearson Prentice Hall, Upper Saddle River, N.J., 608 p.
  8. Bond, G.C. and Kominz, M.A., 1984, Construction of tectonic subsidence curves for the early Paleozoic miogeocline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup, and crustal thinning. Geological Society of America Bulletin, 95, 2, 155-173. https://doi.org/10.1130/0016-7606(1984)95<155:COTSCF>2.0.CO;2
  9. Croize, D., Bjorlykke, K., Jahren, J. and Renard, F., 2010, Experimental mechanical and chemical compaction of carbonate sand. Journal of Geophysical Research: Soild Earth, 115, B11204, doi:10.1029/2010JB007697.
  10. Ehrenberg, S.N. and Nadeau, P.H., 2005, Sandstone vs. carbonate petroleum reservoirs: A global perspective on porosity-depth and porosity-permeability relationships. AAPG Bulletin, 89, 435-445. https://doi.org/10.1306/11230404071
  11. Escalona, A. and Mann, P., 2011, Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Marine and Petroleum Geology, 28, 8-39. https://doi.org/10.1016/j.marpetgeo.2010.01.016
  12. Giles, M.R., 1997, Diagenesis: A quantitative perspective - Implications for basin modelling and rock property prediction. Kluwer Academic Publisher, Dordrecht, 526 p.
  13. Kominz, M.A., Patterson, K. and Odette, D., 2011, Lithology dependence of porosity in slope and deep marine sediments. Journal of Sedimentary Research, 81, 10, 730-742. https://doi.org/10.2110/jsr.2011.60
  14. Kusznir, N.J., Roberts, A.M. and Morley, C.K., 1995, Forward and reverse modelling of rift basin formation. In: Lambiase, J.J. (eds.), Hydrocarbon Habitat in Rift basins. Geological Society, London, Special Publications, 80, 33-56.
  15. Lee, E.Y., Novotny, J. and Wagreich, M., 2019, Subsidence Analysis and Visualization - For Sedimentary Basin Analysis and Modelling. Springer, Cham, 56 p.
  16. Mondol, N.H., Bjorlykke, K., Jahren, J. and Hoeg, K., 2007, Experimental mechanical compaction of clay mineral aggregates-Changes in physical properties of mudstones during burial. Marine and Petroleum Geology, 24, 5, 289-311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
  17. Nooraiepour, M., Mondol, N.H., Hellevang, H. and Bjorlykke, K., 2017, Experimental mechanical compaction of reconstituted shale and mudstone aggregates:Investigation of petrophysical and acoustic properties of SW Barents Sea cap rock sequences. Marine and Petroleum Geology, 80, 265-292. https://doi.org/10.1016/j.marpetgeo.2016.12.003
  18. Schmoker, J.W. and Halley, R.B., 1982, Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bulletin, 66, 12, 2561-2570.
  19. Sclater, J.G. and Christie, P.A., 1980, Continental stretching:An explanation of the post-mid-Cretaceous subsidence of the central North Sea basin. Journal of Geophysical Research: Solid Earth, 85, B7, 3711-3739. https://doi.org/10.1029/JB085iB07p03711
  20. Stone, W.N. and Siever, R., 1996, Quantifying Compaction, Pressure Solution and Quartz Cementation in Moderatelyand Deeply-Buried Quartzose Sandstones from the Greater Green River Basin, Wyoming. In: Crossey, L.J., Loucks, R., Totten, M.W. and Scholle, P.A. (eds.), Siliciclastic Diagenesis and Fluid Flow: Concepts and Applications. SEPM special publication 55, Society of Sedimentary Geology, 129-150.
  21. Thyberg, B.I. and Jahren, J., 2011, Quartz cementation in mudstones: Sheet-like quartz cement from clay mineral reactions during burial. Petroleum Geoscience, 17, 53-63. https://doi.org/10.1144/1354-079310-028
  22. Velde, B. and Meunier, A., 2008, The origin of clay minerals and weathered rocks. Springer-Verlag, Berlin Heidelberg, 406 p.
  23. Wangen, M., 1995, The blanketing effect in sedimentary basins. Basin Research, 7, 4, 283-298. https://doi.org/10.1111/j.1365-2117.1995.tb00118.x

Cited by

  1. Numerical or analog modeling study vol.54, pp.6, 2018, https://doi.org/10.14770/jgsk.2018.54.6.585
  2. Compaction trend estimation and applications to sedimentary basin reconstruction (BasinVis 2.0) vol.5, pp.None, 2018, https://doi.org/10.1016/j.acags.2019.100015
  3. The Late Saalian Cyprina clay of northeastern Germany and the following Weichselian sedimentation and deformation history - Review and new data vol.49, pp.3, 2020, https://doi.org/10.1111/bor.12439
  4. Numerical Modelling to Evaluate Sedimentation Effects on Heat Flow and Subsidence during Continental Rifting vol.10, pp.11, 2020, https://doi.org/10.3390/geosciences10110451
  5. Prediction of Reservoir Parameters of Cambrian Sandstones Using Petrophysical Modelling-Geothermal Potential Study of Polish Mainland Part of the Baltic Basin vol.14, pp.13, 2018, https://doi.org/10.3390/en14133942