DOI QR코드

DOI QR Code

Comparative Effect of Spectacles and Orthokeratology Lenses on Axial Elongation in Children with Mild-to-Moderate Myopia

중등도 이하 소아 근시에서 안경과 각막굴절교정렌즈 착용이 안축장 성장에 미치는 영향 비교

  • Received : 2018.05.03
  • Accepted : 2018.10.30
  • Published : 2018.11.15

Abstract

Purpose: To assess the effect on axial elongation and associated factors between spectacles and of orthokeratology lens (OK) wearing in children with mild to moderate myopia. Methods: A total of one hundred subjects, ranging in age from 6 to 13 years, and with mild to moderate myopia no more than -4.50 diopters in spherical equivalent, visited our clinic from 2013 to 2015. The OK group (75 eyes) and the spectacles group (64 eyes) were compared and analyzed on the axial elongation and associated factors. Results: In the OK group, axial length was elongated in 1 year period with a mean increase of $0.24{\pm}0.29mm$. In spectacles group, axial length was elongated in 1 year period with a mean increase of $0.42{\pm}0.20mm$. The statistically significant suppression of axial elongation was observed in OK group compared to the spectacles group (Mann-Whitney U test, p < 0.05). For OK group, the age of starting OK (Pearson's correlation, r = -0.481, p < 0.05) was the only influencing factor on axial elongation, which had negative correlation with axial elongation. In spectacles group, the age of starting spectacles had negative correlation with axial elongation (Pearson's correlation, r = -0.462, p < 0.05) and baseline spherical equivalent, spherical diopter, cylindrical diopter from manifest refraction had positive correlation with axial elongation. Comparison of axial elongation in orthokeratology lens group and spectacles group by age groups (6 to 9 years [28 eyes], 9 to 13 years [47 eyes]), 9 to 13 years of orthokeratology lens group had the stronger suppression of axial elongation (Mann-Whitney U test, p < 0.05). Conclusions: The OK effectively suppresses axial elongation compared to the spectacles. Although the patients are in age from 9 to 13 years, the axial elongation was effectively suppressed.

목적: 중등도 이하 소아 근시에서 안경과 각막굴절교정렌즈(orthokeratology lens, OK) 착용이 안축장 성장에 미치는 영향 및 관련인자를 알아보고자 하였다. 대상과 방법: 2013년부터 2015년까지 내원한 6세에서 13세 사이 -4.50디옵터 이하의 구면렌즈대응치를 가진 소아 100명을 대상으로 후향적으로 OK군(75안)과 안경군(64안) 간에 안축장 변화와 안축장과 관계된 인자들을 분석하였다. 결과: 안축장 변화는 1년째에 OK군이 $0.24{\pm}0.29mm$의 증가를, 안경군이 $0.42{\pm}0.20mm$의 증가를 보였으며, OK군에서 안경군에 비해 유의하게 안축장 성장이 억제되는 양상을 보였다(Mann-Whitney U test, p<0.05). OK군에서 처음 착용한 나이만이 안축장 변화와 음의 상관관계가 있는 것으로 나타났다(Pearson's correlation, r=-0.481, p<0.05). 안경군에서는 처음 착용한 나이가 안축장 변화와 음의 상관관계(Pearson's correlation, r=-0.462, p<0.05)를, 그 외에 현성굴절검사의 초기 구면렌즈대응치 및 초기 구면렌즈값, 난시값은 안축장 변화와 양의 상관관계를 보였다. 안축장 변화를 비교해 보았을 때 OK를 착용한 경우 6세 이상 9세 미만군(28안)에 비해 9세 이상 13세 이하군(47안)에서 유의하게 안축장 성장이 더 억제되는 양상을 보였다(Mann-Whitney U test, p<0.05). 결론: OK 착용은 안경 착용에 비해 효과적으로 안축장의 성장을 억제할 수 있으며, 9세 이상 13세 이하의 소아에서도 효과적인 안축장 성장 억제가 가능하다.

Keywords

References

  1. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016;123:1036-42. https://doi.org/10.1016/j.ophtha.2016.01.006
  2. Koh V, Yang A, Saw SM, et al. Differences in prevalence of refractive errors in young asian males in Singapore between 1996- 1997 and 2009-2010.Ophthalmic Epidemiol 2014;21:247-55. https://doi.org/10.3109/09286586.2014.928824
  3. Lee YY, Lo CT, Sheu SJ, Lin JL. What factors are associated with myopia in young adults? A survey study in Taiwan Military Conscripts. Invest Ophthalmol Vis Sci 2013;54:1026-33. https://doi.org/10.1167/iovs.12-10480
  4. Jung S, Han J, Kwon J, et al. Analysis of myopic progression in childhood using the Korea National Health and Nutrition Examination Survey. J Korean Ophthalmol Soc 2016;57:1430-4. https://doi.org/10.3341/jkos.2016.57.9.1430
  5. The Eye Disease Case-Control Study Group. Risk factors for idiopathic macular holes. Am J Ophthalmol 1994;118:754-61. https://doi.org/10.1016/S0002-9394(14)72555-3
  6. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology 1999;106:2010-5. https://doi.org/10.1016/S0161-6420(99)90416-5
  7. Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt 2005;25:381-91. https://doi.org/10.1111/j.1475-1313.2005.00298.x
  8. Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res 2015;133:100-11. https://doi.org/10.1016/j.exer.2014.07.015
  9. Schwartz JT. Results of a monozygotic cotwin control study on a treatment for myopia. Prog Clin Biol Res 1981;69:249-58.
  10. Yen MY, Liu JH, Kao SC, Shiao CH. Comparison of the effect of atropine and cyclopentolate on myopia. Ann Ophthalmol 1989;21:180-2.
  11. Shih YF, Chen CH, Chou AC, et al. Effects of different concentrations of atropine on controlling myopia in myopic children. J Ocul Pharmacol Ther 1999;15:85-90. https://doi.org/10.1089/jop.1999.15.85
  12. Siatkowski RM, Cotter S, Miller JM, et al. Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: a 1-year, multicenter, double-masked, placebo-controlled parallel study. Arch Ophthalmol 2004;122:1667-74. https://doi.org/10.1001/archopht.122.11.1667
  13. Tan DT, Lam DS, Chua WH, et al. One-year multicenter, doublemasked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology 2005;112:84-91. https://doi.org/10.1016/j.ophtha.2004.06.038
  14. Jensen H. Timolol maleate in the control of myopia. A preliminary report. Acta Ophthalmol Suppl (Oxf) 1988;185:128-9.
  15. Edwards MH, Li Rw, Lam CS, et al. The Hong Kong progressive lens myopia control study: study design and main findings. Invest Ophthalmol Vis Sci 2002;43:2852-8.
  16. Gwiazda J, Hyman L, Hussein M, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 2003;44:1492-500. https://doi.org/10.1167/iovs.02-0816
  17. Walline JJ, Jones LA, Mutti DO, Zadnik K. A randomized trial of the effects of rigid contact lenses on myopia progression. Arch Ophthalmol 2004;122:1760-6. https://doi.org/10.1001/archopht.122.12.1760
  18. Walline JJ, Lindsley K, Vedula SS, et al. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev 2011;12:CD004916. doi: 10.1002/14651858.CD004916.
  19. Nichols JJ, Marsich MM, Nguyen M, et al. Overnight orthokeratology. Optom Vis Sci 2000;77:252-9.
  20. Swarbrick HA, Wong G, O'Leary DJ. Corneal response to orthokeratology. Optom Vis Sci 1998;75:791-9. https://doi.org/10.1097/00006324-199811000-00019
  21. Park YM, Lee JH, Park YK, et al. Effect of toric orthokeratology lenses in patients with limbus to limbus corneal astigmatism. J Korean Ophthalmol Soc 2015;56:830-4. https://doi.org/10.3341/jkos.2015.56.6.830
  22. Lee SH, Lee DH, Lee HK. Analysis of the cause of failure in the correction of childhood myopia using orthokeratologic lenses. J Korean Ophthalmol Soc 2015;56:317-22. https://doi.org/10.3341/jkos.2015.56.3.317
  23. Kim JR, Chung TY, Lim DH, Bae JH. Effect of orthokeratologic lenses on myopic progression in childhood. J Korean Ophthalmol Soc 2013;54:401-7. https://doi.org/10.3341/jkos.2013.54.3.401
  24. Lee WH, Park YK, Seo JM, Shin JH. The inhibitory effect of myopic and astigmatic progression by orthokeratology lens. J Korean Ophthalmol Soc 2011;52:1269-74. https://doi.org/10.3341/jkos.2011.52.11.1269
  25. Cheung SW, Cho P, Fan D. Asymmetrical increase in axial length in the two eyes of a monocular orthokeratology patient. Optom Vis Sci 2004;81:653-6. https://doi.org/10.1097/01.opx.0000144742.57847.b1
  26. Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012;53:7077-85. https://doi.org/10.1167/iovs.12-10565
  27. Charman WN, Mountford J, Atchison DA, Markwell EL. Peripheral refraction in orthokeratology patients. Optom Vis Sci 2006;83:641-8. https://doi.org/10.1097/01.opx.0000232840.66716.af
  28. Cho P, Cheung SW, Edwards M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 2005;30:71-80. https://doi.org/10.1080/02713680590907256
  29. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol 2009;93:2852-8.
  30. Kakita T, Hiraoka T, Oshika T. Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 2011;52:2170-4. https://doi.org/10.1167/iovs.10-5485
  31. Edwards MH. The development of myopia in Hong Kong children between the ages of 7 and 12 years: a five-year longitudinal study. Ophthalmic Physiol Opt 1999;19:286-94. https://doi.org/10.1046/j.1475-1313.1999.00445.x
  32. Jones LA, Mitchell GL, Mutti DO, et al. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci 2005;46:2317-27. https://doi.org/10.1167/iovs.04-0945
  33. Hyman L, Gwiazda J, Hussein M, et al. Relationship of age, sex, ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Arch Ophthalmol 2005;123:977-87. https://doi.org/10.1001/archopht.123.7.977
  34. Goss DA, Winkler RL. Progression of myopia in youth: age of cessation. Am J Optom Vis Sci 1983;83:651-8.
  35. Hiraoka T, Kakita T, Okamoto F, et al. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 2012;53:3913-9. https://doi.org/10.1167/iovs.11-8453
  36. Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci 2013;90:530-9. https://doi.org/10.1097/OPX.0b013e318293657d
  37. Fu AC, Chen XL, Lv Y, et al. Higher spherical equivalent refractive errors is associated with slower axial elongation wearing orthokeratology. Cont Lens Anterior Eye 2016;39:62-6. https://doi.org/10.1016/j.clae.2015.07.006
  38. Zhong Y, Chen Z, Xue F, et al. Corneal power change is predictive of myopia progression in orthokeratology. Optom Vis Sci 2014;91:404-11. https://doi.org/10.1097/OPX.0000000000000183
  39. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Factors preventing myopia progression with orthokeratology correction. Optom Vis Sci 2013;90:1225-36. https://doi.org/10.1097/OPX.0000000000000034

Cited by

  1. Long-term Effect of Orthokeratology Lenses on Axial Length Elongation in Myopia: 2-3 Years Follow-up Study vol.61, pp.8, 2018, https://doi.org/10.3341/jkos.2020.61.8.897