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[요    약] 

상태 궤환 제어기 설계에 있어서 상태 정보에 대한 접근의 제한성 때문에, 출력 궤환 제어기 설계에 대한 많은 연구가 

수행되어 왔다. 그럼에도 불구하고 최적의 출력 궤한 제어기 설계는 여전히 풀리지 않은 문제로 남아 있다. 따라서, 기존에 

수행되었던 관련한 다양한 고정형 출력 궤한 제어기 설계 연구 결과를 리뷰하고 복잡도와 안정성 관점에서 성능을 평가 

비교함으로써 이 분야의 연구의 방향을 찾고자 한다. 또한, 기존 연구에서 제한적인 시스템 구성에서 제시되었던 알고리즘들을 

어떤 시스템 구성에서도 적용가능할 수 있도록 리뷰하는 알고리즘을 완벽하게 제공한다. 리뷰하는 알고리즘은 모의 실험을 

통해서 안정성 성능과 연산 시간으로 측정된 복잡도를 통하여 비교 평가한다. 모의실험 결과에 따르면, 대수에 의한 제어기 설계 

알고리즘[20]이 가장 적은 복잡도를 가지는 반면에 스케링 변환 기반의 선형 행렬 부등식 알고리즘[18]이 대부분의 경우에 

고복잡도를 가지고 가장 좋은 성능을 갖음을 확인하였다.

[Abstract]

Limited access to state information in the design of a feedback controller has brought out a significant amount of research on the design 

of an output feedback controller. Despite its long endeavor to find an optimal one, it is still an open problem. Thus, we focus on the 

comparison of existing states of arts in the design of a static output feedback controller in terms of stability and complexity so as to find 

further research direction in this field. To this end, we present eight design methods in a unified presentation. We also provide the complete 

description of algorithms which can be applicable to any system configuration. Stability performance and complexity in terms of 

processing time are evaluated through numerical simulations. Simulation results show that the algebraic controller  (AC) algorithm [20] has 

the smallest complexity while the scaling linear matrix inequality (SLMI) algorithm [18] seems to achieve the best stability in most cases 

with much higher complexity.
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Ⅰ. Introduction

With the advances in internet of things (IOT) and digital 

computing, a cyber-physical system (CPS) which can be 

considered as an integrated system of a physical system and a 

cyber system has a critical role in the fourth industrial revolution 

[1]. Interconnected heterogeneous system lays down challenges in 

safety and reliability due to the different nature from physical 

systems only [2],[3]. For example, passive proportional and 

differential (PD) controller was introduced to the group 

coordination for networked unmanned air vehicles (UAVs) and 

quadrotor UAV [3]. A symbolic output feedback controller was 

proposed to achieve the desired behavior of the abstracted system 

of CPS [4]. As the system gets more involved and complex, the 

direct access to the states of the system is difficult, which implies 

that the need for designing output feedback controller efficiently 

becomes more important in a complex system.

However, despite of significant amount of research on output 

feedback controller design [5]-[7], it is still an open problem for a 

general system. One may classify the exisiting approaches to 

desinging the ouput feedback controller into several types. A 

direct method is to represent controller as a space-state model, 

which is called as a dynamic output feedback controller. 

However, the fixed dynamic controller of order less than or equal 

to the number of the states of a target plant is found out to be a 

special case of the static output feedback controller design [8]. 

One may classify existing research on the design of static output 

feedback controller into several different methods. Optimization 

based methods can be further decomposed into a convex approach 

and non-convex approach. A method of minimizing the real part 

of eigenvalue of closed loop system was posed as non-smooth 

non-convex optimization [9]. It heavily depends on initialization 

even though it is computationally advantageous due to the 

absence of Lyapunov matrix as an optimizing variable. Many of 

non-convex design accompany bilinear matrix inequality (BMI) 

which is mainly due to Lyapunov stability condition. Even though 

there is a commercially available solver such as PENLAB [10], 

this method also depends on initializations heavily. 

A method of designing output feedback controller based on 

convex problem can be an alternative to overcome the limitations 

in the non-convex methods. Many of convex problems for 

developing a controller are formulated from non-convex problem 

through exploiting a particular structure or matrix transformation. 

Many methods exploiting Lyapunov stability condition is a 

convex optimization problem with linear matrix inequality (LMI) 

[11],[12]. Iterative design with LMI can be also developed from 

non-convex problem formulation through optimizing one variable 

while fixing other variables sequentially [13] or solving dual 

Lyapunov conditions formulated from Lyapunov matrix and its 

inverse alternately [14]. A LMI based controller which is 

synthesized from BMI, which gives out a unified formulation for 

a class of control problems through multi-object design approach 

[15]. 

With increasing interest in output feedback controller design, 

there have been several review papers on it. A class of static 

output feedback design for a continuous linear time invariant 

system was surveyed with focusing on controller synthesis, and 

robustness for various design approaches [7]. Focusing on the 

design of a static output feedback controller, [16] classified it into 

pole placement, eignestructure assignment, and linear quadrature 

(LQ) regulator. Even though the pole assignment problem is the 

most general, applicability of this approach is limited due to 

computational complexity in the synthesis of output feedback 

controller. As an alternative way to analytical optimal feedback 

law, a class of nonlinar output feedback model predictive control 

(MPC) was briefly reviewed in terms of two groups of 

approaches, separated designs using certainty equivalence 

principle and one using observer error [17]. 

However many review papers have dealt with the design of a 

controller in a continuous time domain [7],[16],[17] while the 

importance of the design of controller in a discrete time domain 

keeps increasing due to advance in embedded system and cyber 

physical system. Thus, we are going to provide the unified 

presentation of several states of arts in static output feedback 

controllers in a discrete time domain. Since the design of dynamic 

output feedback controller is a special case of that of the static 

output feedback controller [8] which is often more reliable and 

easier to implement than dynamic feedback [18]. We provide the 

complete coverage on the design of controller for a given system 

configuration consisting of the number of states, the number of 

inputs, and the number of outputs. We also provide a rough 

comparison on the computational complexities for the considered 

design methods.

This paper is constructed as follows. In section-2, the problem 

formulation for the design of static output feedback is provided. 

In section-3, the complete coverage of the eight design methods 

which are mainly a direct algebraic methods and LMI methods is 

given. In section-4, the computational complexities for the 

considered methods are approximately calculated. The stability 

performance and computational complexities are numerically 

evaluated through simulation in section-5. We make some 

concluding remarks in section-6.
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Ⅱ. Problem Formulation

We consider a linear time invariant system in a discrete time. 

For state  control input  and system output  the 

system in a state space domain can be expressed as 

   
  

                         (1)

where ∈ × , ∈ × , and ∈ × . The control 

input using static output feedback controller can be expressed as 

                                                                         (2)

where   is often called as a gain matrix. The closed loop system 

with the static output feedback can be given as

                                                  (3)

The feasible set of stabilizing gain matrix for static output 

feedback control can be expressed as

                                                           (4)

where    is the singular value of the matrix in the parenthesis. 

The minimizing the singular value of the closed loop system with 

properly chosen  directly is a very difficult problem. In 

subsequent section, we provide some states of arts in the design of 

static output feedback controller through manipulating Lyapunov 

stability condition or algebraic Riccati equation(ARE), which 

tries to find the gain matrix in the set defined in (4) indirectly

Ⅲ. The Design of Static Output 

    Feedback Controller

In this section, the several key exisitng methods of desiging 

static output feedback controller are provided in the complete 

coverage on system configuration consisting of the number of 

states, the number of inputs, and the number of outputs. 

3-1 VK algorithm

Since Lyapunov stability condition in a continuous time 

domain has a bilinear term in LMI, a heuristic method to 

decompose the problem into two separate convex optimization 

problems was proposed [13]. Since there are two matrix variable 

   and   in LMI, a convex problem is formulated over one 

variable from fixing the other variable. This algorithm was 

termed as "VK" algorithm which involved iterations. To develop 

a corresponding algorithm we first provide Lyapunov stability 

condition in a discrete time domain as follows

  
   

                                   (5)

It is noted that   is a nonlinear 

equation over   for a fixed  . To deal with this problem, Schur 

complement lemma can be applied to the second inequality in (5) 

of which resulting inequality can be expressed as 




    

 




≤                                          (6)

where        and    can be considered as a 

decaying rate. Finding  and  can be formulated into a 

minimization problem as follows

min                                                                      (7)

       

VK algorithm in a discrete time domain to solve (7) is provided in 

figure-1 where     and    are alternatively fixed. It is 

noted that the (6) is linear matrix inequality over variables  and 

 . one can not find  from directly solving LMI in terms of 

and  , since solving  over    has a solution in some 

system configuration only. For a fixed variable, corresponding 

minimization problem is a convex problem. Thus, iteration 

converges to a solution even though its global convergence is not 

guaranteed.

3-2 Iterative ARE algorithm

Another heuristic method was proposed in [19]. To develop an 

iterative algorithm, the following equivalent stability condition 

which took the form of ARE was derived from Lyapunov stability 

condition.

                                                            (8)

Fig. 1. VK algorithm.
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where 

        
     

   

                (9)

A positive definite matrix   in (9) can be considered as a matrix 

controlling the magnitude of input in linear quadratic (LQ) 

control. An approximated solution to (9) was proposed as follows

                                                                            

                                             (10)

where  is a solution of the following ARE

                                            (11)

where    . However,  is not known a priori. 

This leads to an iterative algorithm in figure-2, which we call 

IARE (iterative ARE) algorithm. This algorithm is slightly 

modified from the original algorithm in [19]. In the original 

algorithm,  in figure-2 is fixed to , which prevents the 

iterative algorithm from reaching to the exact solution. Setting 

   removes the effect of  with iterations. 

There are fundamental limitations of this algorithm. First, the 

existence of stabilizing controller depends on the choice of   

and  . Second, the approximated solution may not be present 

when   , since   is a singular matrix. To get over this 

numerical problem, one may truncate the number of outputs to . 

To this end, we define   as 

  ≥ 

   
                                                                 (12)

where    × . It is also noted that this algorithm may be 

sensitive to an initialization since depending on the initialization,   

can be negative definite or excessively large which incurs 

numerical problems in the implementation.   

3-3 Scaling LMI algorithm

A scaling LMI approach to static output feedback control 

which we call as SLMI algorithm was proposed. This method 

introduces one additional parameter which gives out variety of 

LMI. Trying out different parameter value may improve some 

performance or increase the possibility of finding the stabilizing 

controller. For the purpose of clarity, we reproduce the associated 

Fig. 2. Iterative ARE algorithm.

theorem and the proof.

Theorem-1 [18].  is a stabilizing static output feedback 

controller if there exist     and   such that




 


 

  


 
                                 (13)

where ∈.

Proof : Let     , then    . 

Lyapunov equation (5) can be equivalently expressed as

  

   for ∀ ≠                                                       

(14)

With Finsler's lemma, (14) subject to     is 

equivalent to














  




 




  


 
     (15)




 




   


 
                      (16)

Applying matrix inequality 
 ←

   to 

(15) results in (16), which completes the proof.

Even though a proper choice of    can increase the possibility of 

existence of stabilizing controller, a systematic method of 

choosing it has not been known. 

3-4 Algebraic Controller Algorithm

LMI based controller design reduces computational complexity 

when considering that static output feedback problem is 

NP-complete [5]. To reduce the complexity further, algebraic 

controller design which we call AC algorithm was developed in 

[20]. A closed-form algebraic solution in terms of original system 

matrices exists when some particular structural conditions are 

satisfied. Derivation starts from the minimization of quadratic 
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cost. It exploits the closed form expression of the solution of ARE 

which exists when input weight matrix      and    goes to 0. 

We do not reproduce the derivation of the controller. Rather, we 

provide algebraic solution for each case and associated issues in 

implementing the controller design. 

Figure-3 shows that static output feedback controller design 

depends on  and  while its calculation is simple and 

straightforward. It covers the cases where the algorithm 

developed in [20] can not be applicable so that it can be 

implementable regardless of realizations of    and  . 

   is singular when   min. This problem can 

be resolved with adjusting the number of inputs or number of 

outputs. In this case, the number of inputs and the number of 

outputs by projecting with nonsingular matrices ∈  ×    

and ∈  ×  . Likewise,  and  are squaring down 

matrices.  compresses the number of outputs so that  

    exists while  expands the control input 

after finding the control input with dimension  . A method for 

determining good  and  is not known yet. 

Random generation can be a practical alternative. However, this 

method is not likely to be god enough when min   . 

Random generation of   and  result in a random 

controller which opportunistically controls a system.

3-5 Discrete W Algorithm

Many approaches to SOF problems exploit the gain matrix 

structure   resulting from state feedback controller design 

where ∈ × . They first define a convex problem in the 

form of (6) of which feasibility guarantees the existence of 

stabilizing controller [21]. Corresponding problem is reproduced 

for clarity.

Definition - Discrete W-Problem [21]: The discrete 

W-problem consists of finding   and  such that




 


    

 
 

   and   

                              (17)

We call this algorithm as DW algorithm following the original 

terms in [21]. When  and  exist, the resulting gain 

matrix is      . When  is substituted by  the first 

matrix in (17) is exactly same as the matrix in (6). One may write  

   
where  

is a pseudo inverse of  . From these 

observations, one can rewrite the resulting gain matrix as 

Fig. 3. Algebraic controller algorithm [20].

                                                                         (18)

 ≥  is required for    to be feasible. Thus, one 

may try (18) to find a stabilizing controller opportunistically 

when   . Alternatively, to get over this numerical problem, 

one may truncate the number of outputs to  through using    

in (12). In this case, (18) can be modified as    
  

accordingly.

3-6 Two Steps Algorithm

A new sufficient and necessary condition for the existence of 

SOF controller was developed with a congruence transformation 

[22]. However, nonlinear matrix inequality condition is not 

tractable to find a solution. It had some structure that matrix 

inequality condition becomes linear with fixing a matrix variable. 

When it is fixed to satisfy some condition, one can find a SOF 

controller from LMI. However, how to fix a matrix variable is not 

known. To circumvent this issue, a new sufficient condition for 

the existence of SOF controller was developed in terms of 

Lyapunov matrix in the following theorem.

Theorem-2 [22] : A system can be stabilized by a SOF 

controller if there exist a positive symmetric matrix  and a 

scalar ∈ such that the following LMI conditions can be 

satisfied.




                                                   (19)






 


 

 


                                                          (20)

where            , and   

∈ ×  is the lower right sub-block matrix of  . 

Proof : Refer to [22].

A two-steps procedure using the theorem-2 which we call TS 

algorithm is summarized in figure-4. The first step is to find a 

Lyapunov matrix  satisfying a sufficient condition in the 
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theorem-2. The second step is to find a matrix term corresponding 

to the production of gain matrix and the part of Lyapunov matrix   

 which satisfies the Lyapunov stability condition in a 

transformed domain. It is worth to note that this algorithm can not 

be applicable to the case of   . To deal with this issue, a 

projection method in (12) to reduce the dimension of output 

signal can be applied. After projecting  with  ,   and   

are set as   and  respectively, since the effective output signal 

dimension is .

3-7 Structural Decomposition Algorithm

Another method to exploit the gain matrix structure    

was developed in [23]. This method is a refined version of [24] 

such that it can calculate a SOF controller satisfying a given 

condition on control structure such as distributed control or 

clustered control. It calculates the SOF controller through solving 

static state feedback problem with some special structures. To this 

end,  and  are constrained on the following forms.

                                                         (21)

                                                                               (22)

where ∈ ×  ∈ × , satisfying    ,   

∈  ×  satisfying    , and ∈    ×   

and ∈  ×  are symmetric positive definite matrices. 

can be written through using associated conditions as 

                                                                       (23)

It is noted that   is none other than a generalized right inverse of 

 parameterized by  . (22) can be rearranged through 

exploiting     as

   
                            (24)

Fig. 4. Two-steps algorithm [22].

Fig. 5. Modified VK algorithm.

where   
. From (24), we get     which we 

call a structural decomposition (SD) algorithm throughout this 

paper. There are several points to be addressed on this method. 

One can easily derive a gain matrix with some structural 

constraints to realize a distributed or clustered control through 

imposing corresponding structure on  and . The 

performance of the controller has dependency on . However, 

choosing an optimal one is still an open problem. The structural 

decomposition algorithm can be applicable when  ≥ . The 

right inverse does not exist when   . One may adopt 

projection method employed. In this case, (23) be modified as   

  
 with resulting controller   

 

accordingly.

3-8 Modified VK algorithm

One may design a controller with a large number of outputs 

and a large number of inputs to make it robust to uncertainties. In 

the absence of uncertainties, excessive computational complexity 

and numerical problems due to large matrix size can be 

problematic. During numerical simulations, it is the case with VK 

algorithm which directly calculates a gain matrix. Thus, we 

propose a modified VK (MVK) algorithm which decompose a 

gain matrix such that it can have smaller dimension for 

optimization when   . In this case, the gain matrix can be 

expressed as

                                                                              (24)

where  ∈ ×  and ∈  × . One may fix  as a 

constant matrix through random generation. The optimizing 

variable is now  . The corresponding MVK algorithm is 

summarized in figure-5.

Ⅳ. Computational Complexity of the 

    Design Approaches
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The computational complexity of the design of a static output 

feedback controller can depend on several factors such as the 

number of variables, the matrix size associated with constraint, 

the number of constraints, the number of iterations if necessary, 

and so forth. We summarize those factors in table-1. The main 

complexities for VK algorithm are expected to be associated with 

the feasibility of LMI and the number of iterations. The 

complexity for feasibility of LMI is given as    

where   is the number of scalar variables, and   is the size of 

the square matrix underlying LMI [25]. Thus, the expected 

complexity of VK algorithm is likely to be 

  . Similarly, the complexities for MVK 

algorithm is expected to be  min.

min . The implementation of IARE requires 

square matrix inversion of size  and the solution of ARE of 

which complexities are log [26] and   [27] 

respectively. Thus, the complexity of IARE is likely to be 

 log log . Since SLMI has the same number 

of variables and the matrix size in LMI as those of VK algorithm, 

its complexity is approximately the same as VK except that it 

may have the different number of the iterations. AC algorithm has 

the matrix inversion as main complexity. Thus, its complexity is 

about minlogmin . Since the main 

complexity of DW algorithm is associated with LMI, its 

complexity is about 

 minmin .  The 

implementation of TS algorithm consists of matrix inversions and 

LMIs. Thus, its complexity is about   .  

SD algorithm can take advantage of structural decomposition 

when  ≥ .  In this case, its complexity is about 

     

   .

Since the computational complexity depends on the number of 

variables, the matrix size in LMI and the existence of iterations, 

they are summarized in table-1. The associated computational  

complexities are summarized in table-2. They are valid when 

associated parameters are asymptotically large since it is 

presented as big O complexity. The complexity with parameters 

of small value is likely to depend on scaling factors which are not 

shown in big O complexity representation. Thus, we will go back 

to this issue through measuring processing time for some system 

configurations in the next section. Nonetheless, the maximum 

order in big O can be representing how large the complexity it 

may be. From this perspective, AC algorithm is likely to have the 

smallest complexity while IARE algorithm does the second.

Table 1. The summary of the number of variables, the 

matrix size in LMI, and the existence of iterations 

for each method.

The number of 

variables

The matrix size in 

LMI

Existence of 

iterations

VK   × Yes

MVK  min × Yes

IARE   N/A Yes

SLMI   × Yes

AC  N/A No

DW  min

min
×  No

TS  
×
×

No

SD

i f  ≥ 

  
  

× No

Table 2. The complexity of the methods for designing a 

static output feedback controller.

Approximate Complexity

VK  

MVK  minmin

IARE  log log

SLMI  

AC minlogmin

DW  minmin

TS  

SD
     

  

Ⅴ. Numerical Experiments

  In this section, we compare the performance of the considered 

control algorithms in terms of stabilizability. To this end, 

matrices,   and  are independently and identically 

generated from standard normal distribution. For each system 

configuration represented as a tuple  the number of 

events that a controller provides stability is counted over 10000 

system realizations. The stability of the derived closed loop 

system was judged from testing whether the maximum absolute 

of eigenvalue of the closed loop system   is less than 1 

or not. The maximum number of iterations for VK, MVK, and 

IARE were limited to 100 to reduce simulation time, since 

convergence seemed to be achieved with several iterations.   in 

(8) for SLMI algorithm was set from -0.5 to 0.4 with 0.1 step.

In figure-6, stabilizability of the considered algorithms is 
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assessed for increasing number of outputs while fixing   and  

as 2 and 3 respectively. It is observed that the stability of the 

closed loop system controlled by all the considered algorithms 

was achieved in most cases when the number of outputs is greater 

than or equal to the number of states. There are several cases that 

VK and MVK algorithms does not provide stability even when 

 ≥ , which be attributed to local convergence with iterations. 

SLMI algorithm shows the best performance for (2,3,1), which 

can be attributed to trying several design methods with different 

scalars. The worst performance of AC can be attributed to a 

random controller for (2,3,1). It is noted that both DW and SD 

algorithm exploit the gain matrix structure of a state feedback 

controller, which may help to find a stabilizing output feedback 

controller.

The performance of the considered algorithms is compared 

in figure-7 for increasing number of inputs with fixing   and   

as 2 and 4 respectively. It is observed that considerable number 

of failures in stabilizing a system happen with IARE, SLMI, 

and AC algorithms for (2,1,4). The performance degradation 

with AC for this system configuration can be attributed to the 

fact that it operates as a random controller while further 

research is needed to find out the cause for IARE and SLMI 

algorithms. It is also noted that VK has significant number of 

failures for (2,5,4). Even though VK and MVK has the same 

LMI constraint size, they have different dimension for 

optimizing variables. We conjecture that the reduction in the 

dimension of optimizing variables can have less numerical 

problems which make MVK work fine for (2,5,4). 

Performances with increasing number of states are also shown 

in figure-8 for    and   . Drastic performance 

degradation is observed as  increases. VK, MVK, and AC 

algorithms show relative worse performance while AC 

algorithm does the best performance for      and  

  .

Fig. 6. Performance with increasing number of inputs.

Fig. 7. Performance with increasing number of outputs.

Fig. 8. Performance with increasing number of states.

Fig. 9. Comparison of the processing time of controller 

design for the number of states.
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Fig. 10. Comparison of the processing time of controller 

design for the number of inputs.

Fig. 11. Comparison of the processing time of controller 

design for the number of outputs.

To assess the complexity, processing time for calculating a 

gain matrix was measured for each system configuration over 

1000 random system realizations while simulation condition is 

same as one previously mentioned unless otherwise stated. A 

computer with Intel Core i5-4690 CPU, 8.0GB RAM, and 64bit 

Windows 7 is used. The measurement of processing time was 

executed sequentially while leaving alone the computer until it 

was finished.

In figure-9, the processing time for designing a static output 

feedback controller was compared for increasing number of 

states while    and   . As expected from big O 

complexity analysis, AC algorithm shows the smallest 

processing time while the IARE algorithm takes the second. 

Other algorithms seem to have similar order of complexity 

while DW, TS, and SD have relatively smaller complexity. It is 

observed that VK, MVK, and SLMI algorithms have larger 

complexity with increasing number of states. As the number of 

states increases with the fixed    and    required 

number of iterations increases proportionally in addition to the 

increase in the complexity due to increased dimension in LMI. 

It is also found that the complexity of the IARE algorithm is 

quite insensitive to the number of states. These results may be 

attributed to the parallel processing in a SW package.

In figure-10, the processing time for designing a static output 

feedback controller was compared for increasing number of 

inputs while    and   . SLMI algorithm is found to have 

relative increase in processing time when    while the 

complexities of other algorithms do not vary much over the 

different number of inputs. Increase in the processing of SLMI 

algorithm is due to the increased number of iterations which 

runs independently with different scalar. It is observed that the 

complexities of other algorithms do not vary much over the 

different number of inputs. In figure-11, the processing time for 

designing a static output feedback controller was compared for 

increasing number of outputs while    and   . It is 

observed that every iterative algorithm has increased processing 

time due to increased number of iterations when   . It is 

also noted that AC algorithm have relatively consistent 

complexity for every system configuration considered. This 

result is attributed to the fact that its complexity depends on  

min .

Ⅵ. Conclusions

In this paper, a class of existing states of arts in the design of a 

static output feedback controller was presented in a unified way 

so that it could be applicable to any system configuration. The 

efficiency of the designs was assessed in terms of stability and 

complexity associated with it. Among eight algorithms, AC 

algorithm has the smallest complexity for all considered system 

configurations. SLMI algorithm seems to achieve the best 

stability in most cases while its complexity is relative much larger 

than AC and IARE algorithm. It will be desirable to select an 

algorithm depending on a system configuration in consideration 

of complexity. For example, IARE algorithm and AC algorithm 

can be choices for the small number of outputs and the small 

number of inputs respectively.

There are several things to note from reviewing the methods 

for designing the static output feedback controller. First, IARE 

and AC algorithms are not associated with Lyapunov matrix. 

This means that the complexity of Lyapunov-based method can 
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be limited by calculating Lyapunov matrix. However, it is a 

nontrivial problem to extend AC algorithm or direct 

optimization method on the eigen-value to a multi-objective 

control problem, which calls for further research [9]. A 

necessary and sufficient condition for the existing algorithms 

with various system configurations needs to be studied more 

theoretically. For example, considered algorithms have 

different characteristic for   . The practical consideration of 

complexity is also needed. In many control problems, the 

number of states or the number of outputs are often not very 

large. Thus, complexity based on big O may not be enough to 

give an accurate estimate on complexity. In addition, parallel 

processing may have some impact on the complexity when the 

processing time is limited and the sufficient number of 

programmable logics is available. Thus, more generic model for 

the complexity on designing a controller needs to be paid 

attention.

The implication of the simulation results is limited except 

that what kind of algorithms may perform well in various 

system configurations. Since each algorithm has different 

structures and it is found from one satisfying LMI, it is not 

straightforward to explain why one algorithm works better 

while another algorithm works worse. However, performance 

comparison through simulations can be a starting point to study 

theoretically why one type of algorithm works better than the 

other algorithm. Even though we considered stability only, 

further numerical comparison is called for to reveal whether the 

algorithm providing the best stability performance can work 

best in control problems in terms of  performance and ∞

performance.
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