DOI QR코드

DOI QR Code

무선 랜 기반 V2X 통신에서의 보조 수신기를 활용한 동작에 따른 영향

The effects of Wake-up Radio in WLAN V2P Communication

  • 홍한슬 (연세대학교 전기전자공학부) ;
  • 김용호 (한국교통대학교 철도공학부)
  • Hong, Hanseul (School of Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Ronny Yongho (Department of Railroad Electrical & Electronic Engineering, Korea National University of Transportation)
  • 투고 : 2018.07.30
  • 심사 : 2018.08.26
  • 발행 : 2018.08.31

초록

자율주행을 현실화하기 위해 각국에서는 관련통신표준을 기반으로 시스템을 구성하고 있으며, 그 중 무선랜 표준을 제정하는 IEEE에서는 IEEE 802.11p와 WAVE 계열표준을 제정하여 차량통신용 무선통신을 지원하고 있다. 최근 저전력 동작이 부각됨에 따라 보조수신기를 활용하는 표준인 IEEE 802.11ba이 진행 중이며, 그 사용 예시에는 V2P 동작을 포함하고 있다. 이때, V2X 통신에 사용되는 무선 랜 표준인 IEEE 802.11p가 IEEE 802.11ba와 같이 사용 될 경우, 기존 IEEE 802.11ba에서의 추가적인 wake-up frame의 전송으로 인해 채널용량이 지나치게 낮아져 지연시간 요구사항을 맞추지 못할 수 있다. 본 논문에서는 차량용 무선랜 표준인 IEEE 802.11p 및 WAVE가 최근 개발되고 있는 저전력 표준인 IEEE 802.11ba 표준과 결합될 때의 시스템 구성방법을 제시하고 성능분석과 고찰을 통해 미래 자율주행 통신에서 IEEE 802.11ba를 이용한 저전력 V2P 동작을 효과적으로 사용하기 위한 고려사항 및 개선 방안을 제시하고자 한다.

To realize the self-driving technology, there have been various system designs based on the related V2X standards, especially the IEEE 802.11p and WAVE standard supporting the WLAN V2X communication. On the other hand, the new standard IEEE 802.11ba defining supplementary wake-up radio operation is now under standardization targeting the low power operation, and it includes the V2P operation in use cases. However, if IEEE 802.11ba is used with the IEEE 802.11ba for V2X operation, the additional transmission procedure of wake-up frame in IEEE 802.11ba may cause the congestion problem and fails to meet the delay requirement. In this paper, the system structure of the combination of IEEE 802.11ba with the 802.11p is studied. In addition, based on the analysis and simulation, the considerations and improvements for effective low-power V2P communication in future self-driving technology using IEEE 802.11ba are proposed.

키워드

참고문헌

  1. IEEE Computer Society, IEEE Standard for Information Technology-Telecommunications and Information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p, July. 2010.
  2. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Service for Applications and Management Messages, IEEE 1609.2, March. 2016.
  3. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Networking Services, IEEE 1609.3, April. 2016.
  4. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE)-Multi-Channel Operation, IEEE 1609.4, March. 2016.
  5. 3GPP, Service requirements for enhanced V2X scenarios, 3GPP TS 22.186 (V15.3.0), June, 2018.
  6. R. J. Yu, WUR Usage Model Document, IEEE 802.11 Working Group, 17/29r16, September. 2017.
  7. L. Miao, K. Diouani, B. J. Van Wyk, and Y. Hamam, "Performance Evaluation of IEEE 802.11p MAC Protocol in VANETs Safety Applications," in 2013 IEEE Wireless Communication and Networking Conference (WCNC), Shanghai: China, pp. 1663-1668, 2013.
  8. H. Peng, D. Li, H. Zhou, H. Zhao, W. Zhuang, and X. Shen, “Performance Analysis of IEEE 802.11p DCF for Multiplatooning Communications With Autonomous Vehicles,” IEEE Transactions on Vehicular Technology, Vol. 66, No. 3, pp. 2485-2498, March. 2017. https://doi.org/10.1109/TVT.2016.2571696
  9. D. Lee, S. H. Ahmed, D. Kim, J. Copeland, and Y. Chang, "Distributed SCH selection for concurrent transmissions in IEEE 1609.4 multi-channel VANETs," in 2017 IEEE International Conference on Communications (ICC), Paris: France, pp. 1-6, 2017.
  10. H. Zhang, 802.11 for Next Generation V2X Communication, IEEE 802.11 Working Group, 18/513r2, March, 2018.
  11. 802.11 Working Group, Draft Standard for Information Technology-Telecommunications and Information information exchange between systems-Local and metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 9: Wake-Up Radio Operation, IEEE Computer Society, IEEE P802.11ba/D0.3, May. 2018.
  12. M. Park, S. Azizi, R. Stacey, and J. Liu. Low-Power Wake-Up Receiver (LP-WUR) for 802.11, IEEE 802.11 Working Group, 15/1307r1, November. 2015.
  13. H. Hong, Y. Y. Kim, and R. Y. Kim. "A Low-Power WLAN Communication Scheme for IoT WLAN Devices Using Wake-Up Receivers," Applied Science, Vol. 8, No. 1: 72, pp. 1-16, January, 2018.
  14. S. Azizi, A PAR Proposal for Wake-up Radio, IEEE 802.11 Working Group, 16/1045r9, November, 2016.
  15. Society of Automotive Engineers International, Dedicated Short Range Communications (DSRC) Message Set Dictionary, J2735, 2009.
  16. T. Sakurai, and H. L. Vu, “MAC Access Delay of IEEE 802.11 DCF,” IEEE Transactions on Wireless Communications, Vol. 6, No. 5, pp. 1702-1710, May. 2007. https://doi.org/10.1109/TWC.2007.360372