DOI QR코드

DOI QR Code

Simulation of Low-Grazing-Angle Coherent Sea Clutter

Low Grazing Angle에서의 코히어런트 해상 클러터 시뮬레이션

  • Received : 2018.04.19
  • Accepted : 2018.08.18
  • Published : 2018.08.31

Abstract

The probability density function(PDF) for the amplitude of the reflectivity of low-grazing-angle sea clutter has generally been modeled by a compound-Gaussian distribution, rather than by the Rayleigh distribution, owing to the intensity variation of each clutter patch over time. The texture component forming the reflectivity has been simulated by combining Gamma distribution and memory-less nonlinear transformation(MNLT). On the other hand, there is no typical method available that can be used to simulate the speckle component. We first review Watt's method, wherein the speckle is simulated starting from the Doppler spectrum of the received echoes that is modeled as having a Gaussian shape. Then, we introduce a newly proposed method. The proposed method simulates the speckle by manipulating a clutter covariance matrix through the Cholesky decomposition after minimizing the effect of adjacent clutter patches using an equalizer. The feasibility of the proposed method is validated through simulation, wherein the results from two methods are compared in terms of the Doppler spectrum and the correlation function.

낮은 관측각에서의 해상 클러터 반사계수의 진폭 확률밀도 함수는 각 클러터 패치별 평균 세기가 서로 다르므로 Rayleigh 분포가 아닌 compound Gaussian 분포로 가정하는 것이 일반적이다. 반사계수를 구성하는 텍스쳐(texture) 성분은 Gamma 분포 및 MNLT(memoryless nonlinear transformation)를 이용해서 발생시키지만, 스펙클(speckle) 성분 시뮬레이션에 대해서는 정형화된 방법은 없다. 수신 신호의 스펙트럼을 Gaussian 형태의 도플러 스펙트럼 형태로 모델링한 후 스펙클 성분을 발생시킨 기존 S. Watt 방법을 소개한 후 본 논문에서 새롭게 제안한 방법을 제시하였다. 제안 방법은 이퀄라이져(equalizer) 필터를 사용해서 인접 클러터 영향을 최소화한 후, 클러터 공분산 행렬에 대해 Cholesky 분해를 통해서 스펙클 성분을 생성하는 방법으로써 제안 방법의 타당성 검증을 위해 시뮬레이션을 통해 도플러 스펙트럼 및 코릴레이션(correlation) 함수 관점에서 제안한 방법과 기존 방법을 비교한다.

Keywords

References

  1. Y. Dong, "Distribution X-band high resolution and high grazing angle sea clutter," Electronic Warfare and Radar Division Defense Science and Technology Organization, Australia, DSTO-RR-0316, 2006.
  2. M. Farshchian, F. L. Posner, "The Pareto distribution for low grazing angle and high resolution X-band sea clutter," in 2010 IEEE Radar Conference, Washington, DC, May 2010, pp. 789-793.
  3. S. Kemkemian, J. F. Degurse, V. Corretja, and R. Cottron, "Sea clutter modelling for space-time processing," in 2016 17th International Radar Symposium(IRS), Krakow, 2016, pp. 1-6.
  4. 정재훈, 이재민, 윤재혁, 신희섭, "항공용 레이다를 이용한 잠망경 탐지 MMTI 신호처리 기법 연구 및 성능 분석," 한국전자파학회논문지, 28(8), pp. 661-669, 2017년 8월. https://doi.org/10.5515/KJKIEES.2017.28.8.661
  5. R. J. A. Tough, K. D. Ward, "The correlation properties of gamma and other non-Gaussian processes generated by memoryless nonlinear transformation," Journal of Physics D: Applied Physics, vol. 32, no. 23, pp. 3075-3084, 1999. https://doi.org/10.1088/0022-3727/32/23/314
  6. G. Davidson, "Simulation of coherent sea clutter," IET Radar Sonar Navigation, vol. 4, no. 2, pp. 168-177, Apr. 2010. https://doi.org/10.1049/iet-rsn.2009.0075
  7. S. Watts, "Modeling and simulation of coherent sea clutter," IEEE Transactions on Aerospace and Electronic Systems, vol. 48, no. 4, pp. 3303-3317, Oct. 2012. https://doi.org/10.1109/TAES.2012.6324707
  8. M. A. Richards, Fundamentals of Radar Signal Processing, 2nd ed. McGraw-Hill, 2005.
  9. S. P. Sira, D. Cochran, A. Papandreou-Suppappola, D. Morrell, W. Moran, and S. Howard, "A subspace-based approach to sea clutter suppression for improved target detection," in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2006, pp. 752-756.
  10. N. D. Sidiropoulos, F. Gini, R. Chellappa, and S. Theodoridis, Academic Press Library in Signal Processing: Volume 2: Communications and Radar Signal Processing, New York, NY, Academic Press, 2014.
  11. G. V. Weinberg, L. Gunn, "Simulation of statistical distributions using the memoryless nonlinear transform," Defence Science and Technology Organisation, Australia, DSTO-TR-2517, 2011.
  12. K. D. Ward, R. J. A. Tough, and S. Watts, Sea Clutter: Scattering, the K Distribution and Radar Performance, Institution of Engineering and Technology, London, Institution of Engineering and Technology, 2006.
  13. S. Kemkemian, L. Lupinski, R. Cotton, and S. Watts, "Performance assessment of multi-channel radars using simulated sea clutter," in 2015 IEEE Radar Conference (RadarCon), Arlington, VA, May 2015, pp. 1015-1020.
  14. S. Watts, L. Rosenberg, "Coherent radar performance in sea clutter," in 2015 IEEE Radar Conference, Johannesburg, 2015, pp. 103-108.