DOI QR코드

DOI QR Code

콜로이드 양자점 합성의 다양한 연구 개발 동향

Recent Developments in Synthesis of Colloidal Quantum Dots

  • 정재용 (재료연구소 분말/세라믹연구본부) ;
  • 홍종팔 (라미나(주)) ;
  • 김영국 (재료연구소 분말/세라믹연구본부)
  • 투고 : 2018.07.04
  • 심사 : 2018.07.13
  • 발행 : 2018.08.28

초록

Over the last decade, the study of the synthesis of semiconductor colloidal quantum dots has progressed at a tremendous rate. Colloidal quantum dots, which possess unique spectral-luminescent characteristics, are of great interest in the development of novel materials and devices, which are promising for use in various fields. Several studies have been carried out on hot injection synthesis methods. However, these methods have been found to be unsuitable for large-capacity synthesis. Therefore, this review paper introduces synthesis methods other than the hot injection synthesis method, to synthesize quantum dots with excellent optical properties, through continuous synthesis and large capacity synthesis. In addition, examples of the application of synthesized colloid quantum dots in displays, solar cells, and bio industries are provided.

키워드

참고문헌

  1. A. M. Smith and S. Nie: Acc. Chem. Res., 43 (2009) 190.
  2. H. Goesmann and C. Feldmann: Angewandte Chemie International Edition, 49 (2010) 1362. https://doi.org/10.1002/anie.200903053
  3. P. Reiss, M. Protiere and L. Li: Small 5 (2009) 154. https://doi.org/10.1002/smll.200800841
  4. V. I. Klimov: Nanocrystal Quantum Dots, CRC Press (2010) 1.
  5. J. Y. Kim, O. Voznyy, D. Zhitomirsky and E. H. Sargent: Adv Mater., 25 (2013) 4986. https://doi.org/10.1002/adma.201301947
  6. D. V. Talapin, J. Lee, M. V. Kovalenko and E. V. Shevchenko: Chem. Rev., 110 (2009) 389.
  7. S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov: J. Am. Chem. Soc., 129 (2007) 11708. https://doi.org/10.1021/ja068351m
  8. S. K. Panda, S. G. Hickey, H. V. Demir and A. Eychmuller: Angewandte Chemie, 123 (2011) 4524. https://doi.org/10.1002/ange.201100464
  9. N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339. https://doi.org/10.1021/ja068360v
  10. S. M. Hwang, J. B. Lee, S. H. Kim and J. H. Ryu: J. of the Korean Crystal Growth and Crystal Technology, 22 (2012) 233. https://doi.org/10.6111/JKCGCT.2012.22.5.233
  11. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat: J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
  12. C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath: Science, 277 (1997) 1978. https://doi.org/10.1126/science.277.5334.1978
  13. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez: Nat. Biotechnol. 21 (2003) 41. https://doi.org/10.1038/nbt764
  14. W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 130 (2008) 1274. https://doi.org/10.1021/ja076069p
  15. H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin: Nano Letters, 9 (2009) 4221. https://doi.org/10.1021/nl902438d
  16. J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y. Park, V. I. Klimov, C. Lee, D. C. Lee and W. K. Bae: Adv. Mater., 26 (2014) 8034. https://doi.org/10.1002/adma.201403620
  17. V. K. LaMer and R. H. Dinegar: J. Am. Chem. Soc., 72 (1950) 4847. https://doi.org/10.1021/ja01167a001
  18. I. M. Lifshitz and V. V. Slyozov: J.Phys. Chem. Solids, 19 (1961) 35. https://doi.org/10.1016/0022-3697(61)90054-3
  19. V. K. L. Mer: Ind. Eng. Chem., 44 (1952) 1270. https://doi.org/10.1021/ie50510a027
  20. J. W. Mullin: Crystallization(Ed.), Butterworth-Heinemann (2001) 1.
  21. M. Niederberger and H. Colfen: Phys. Chem. Chem. Phys., 8 (2006) 3271. https://doi.org/10.1039/B604589H
  22. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos: Nature, 404 (2000) 59. https://doi.org/10.1038/35003535
  23. V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos: J. Am. Chem. Soc., 124 (2002) 12874. https://doi.org/10.1021/ja027262g
  24. I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono and N. T. Thanh: Chem. Mater., 21 (2009) 3021. https://doi.org/10.1021/cm9008442
  25. Z. Tang and N. A. Kotov: Adv Mater., 17 (2005) 951. https://doi.org/10.1002/adma.200401593
  26. C. Wagner: Zeitschrift Fur Elektrochemie, Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 65 (1961) 581.
  27. H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen and A. P. Alivisatos: Science, 324 (2009) 1309. https://doi.org/10.1126/science.1172104
  28. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
  29. A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta and R. Viswanatha: J. Phys. Chem. Lett., 4 (2013) 3544. https://doi.org/10.1021/jz401958u
  30. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng: Nature, 515 (2014) 96. https://doi.org/10.1038/nature13829
  31. C. B. Murray, C. R. Kagan and M. G. Bawendi: Annu. Rev. Mater. Sci., 30 (2000) 545. https://doi.org/10.1146/annurev.matsci.30.1.545
  32. C. de Mello Donega, P. Liljeroth and D. Vanmaekelbergh: Small, 1 (2005) 1152. https://doi.org/10.1002/smll.200500239
  33. S. G. Kwon and T. Hyeon: Small, 7 (2011) 2685. https://doi.org/10.1002/smll.201002022
  34. S. Asokan, K. M. Krueger, V. L. Colvin and M. S. Wong: Small, 3 (2007) 1164. https://doi.org/10.1002/smll.200700120
  35. Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 1389. https://doi.org/10.1021/ja0027766
  36. L. Li and P. Reiss: J. Am. Chem. Soc., 130, (2008) 11588. https://doi.org/10.1021/ja803687e
  37. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb: Science, 300 (2003) 1434. https://doi.org/10.1126/science.1083780
  38. D. Loss and D. P. DiVincenzo: Phys. Rev. A, 57 (1998) 120. https://doi.org/10.1103/PhysRevA.57.120
  39. D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen and P. H. Seeberger: Chem. Commun., (2005) 578.
  40. W. Lin, Y. Wang, S. Wang and H. Tseng: Nano Today, 4 (2009) 470. https://doi.org/10.1016/j.nantod.2009.10.007
  41. K. W. Wang, K. G. Lee, T. J. Park, Y. Lee, J. Yang, D. H. Kim, S. J. Lee and J. Y. Park: Biotechnol. Bioeng., 109 (2012) 289. https://doi.org/10.1002/bit.23286
  42. R. Kikkeri, P. Laurino, A. Odedra and P. H. Seeberger: Angew. Chem. Int. Ed., 49 (2010) 2054. https://doi.org/10.1002/anie.200905053
  43. B. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee and D. Y. Jeon: Small, 8 (2012) 3257. https://doi.org/10.1002/smll.201200773
  44. A. Günther and K. F. Jensen: Lab on a Chip, 6 (2006) 1487. https://doi.org/10.1039/B609851G
  45. S. Gomez-de Pedro, C. S. Martínez-Cisneros, M. Puyol and J. Alonso-Chamarro: Lab on a Chip, 12 (2012) 1979. https://doi.org/10.1039/c2lc00011c
  46. K. Kim, S. Jeong, J. Y. Woo and C. Han: Nanotechnology, 23 (2012) 065602. https://doi.org/10.1088/0957-4484/23/6/065602
  47. O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
  48. R. G. Larson, E. S. Shaqfeh and S. J. Muller: J. Fluid Mech., 218 (1990) 573. https://doi.org/10.1017/S0022112090001124
  49. S. J. Muller, R. G. Larson and E. S. Shaqfeh: Rheol. Acta, 28 (1989) 499. https://doi.org/10.1007/BF01332920
  50. R. D. Moser, P. Moin and A. Leonard: J. of Computational Physics, 52 (1983) 524. https://doi.org/10.1016/0021-9991(83)90006-2
  51. P. S. Marcus: J. Fluid Mech., 146 (1984) 45. https://doi.org/10.1017/S0022112084001762
  52. B. Eckhardt, S. Grossmann and D. Lohse: J. Fluid Mech., 581 (2007) 221. https://doi.org/10.1017/S0022112007005629
  53. T. S. Tran, S. J. Park, S. S. Yoo, T. Lee and T. Kim: RSC Adv., 6 (2016) 12003. https://doi.org/10.1039/C5RA22273G
  54. Y. H. Song, S. H. Choi, W. K. Park, J. S. Yoo, S. B. Kwon, B. K. Kang, S. R. Park, Y. S. Seo, W. S. Yang and D. H. Yoon: Sci. Rep., 8 (2018) 2009. https://doi.org/10.1038/s41598-018-20376-3
  55. http://www.kims.re.kr/v17/bbx/content.php?co_id=02_02 _02
  56. T. Xuan, J. Liu, H. Li, H. Sun, L. Pan, X. Chen and Z. Sun: RSC Adv., 5 (2015) 7673. https://doi.org/10.1039/C4RA14982C
  57. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. Kwok, C. Wang and W. Y. Teoh: J. Phys. Chem. C, 118 (2014) 16393. https://doi.org/10.1021/jp410279z
  58. Y. Huang, Y. Lan, Q. Yi, H. Huang, Y. Wang and J. Lu: Chem. Res. Chin. Univ., 32 (2016) 16. https://doi.org/10.1007/s40242-015-5279-8
  59. M. R. Hodlur and K. M. Rabinal: Chem. Eng. J., 244 (2014) 82. https://doi.org/10.1016/j.cej.2014.01.064
  60. Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic: Nat. Photonics, 7 (2013) 13. https://doi.org/10.1038/nphoton.2012.328