References
- A. M. Smith and S. Nie: Acc. Chem. Res., 43 (2009) 190.
- H. Goesmann and C. Feldmann: Angewandte Chemie International Edition, 49 (2010) 1362. https://doi.org/10.1002/anie.200903053
- P. Reiss, M. Protiere and L. Li: Small 5 (2009) 154. https://doi.org/10.1002/smll.200800841
- V. I. Klimov: Nanocrystal Quantum Dots, CRC Press (2010) 1.
- J. Y. Kim, O. Voznyy, D. Zhitomirsky and E. H. Sargent: Adv Mater., 25 (2013) 4986. https://doi.org/10.1002/adma.201301947
- D. V. Talapin, J. Lee, M. V. Kovalenko and E. V. Shevchenko: Chem. Rev., 110 (2009) 389.
- S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder and V. I. Klimov: J. Am. Chem. Soc., 129 (2007) 11708. https://doi.org/10.1021/ja068351m
- S. K. Panda, S. G. Hickey, H. V. Demir and A. Eychmuller: Angewandte Chemie, 123 (2011) 4524. https://doi.org/10.1002/ange.201100464
- N. Pradhan and X. Peng: J. Am. Chem. Soc., 129 (2007) 3339. https://doi.org/10.1021/ja068360v
- S. M. Hwang, J. B. Lee, S. H. Kim and J. H. Ryu: J. of the Korean Crystal Growth and Crystal Technology, 22 (2012) 233. https://doi.org/10.6111/JKCGCT.2012.22.5.233
- I. Robel, V. Subramanian, M. Kuno and P. V. Kamat: J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
- C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, and J. R. Heath: Science, 277 (1997) 1978. https://doi.org/10.1126/science.277.5334.1978
- X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez: Nat. Biotechnol. 21 (2003) 41. https://doi.org/10.1038/nbt764
- W. Liu, M. Howarth, A. B. Greytak, Y. Zheng, D. G. Nocera, A. Y. Ting and M. G. Bawendi, J. Am. Chem. Soc., 130 (2008) 1274. https://doi.org/10.1021/ja076069p
- H. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Gratzel and M. K. Nazeeruddin: Nano Letters, 9 (2009) 4221. https://doi.org/10.1021/nl902438d
- J. Lim, B. G. Jeong, M. Park, J. K. Kim, J. M. Pietryga, Y. Park, V. I. Klimov, C. Lee, D. C. Lee and W. K. Bae: Adv. Mater., 26 (2014) 8034. https://doi.org/10.1002/adma.201403620
- V. K. LaMer and R. H. Dinegar: J. Am. Chem. Soc., 72 (1950) 4847. https://doi.org/10.1021/ja01167a001
- I. M. Lifshitz and V. V. Slyozov: J.Phys. Chem. Solids, 19 (1961) 35. https://doi.org/10.1016/0022-3697(61)90054-3
- V. K. L. Mer: Ind. Eng. Chem., 44 (1952) 1270. https://doi.org/10.1021/ie50510a027
- J. W. Mullin: Crystallization(Ed.), Butterworth-Heinemann (2001) 1.
- M. Niederberger and H. Colfen: Phys. Chem. Chem. Phys., 8 (2006) 3271. https://doi.org/10.1039/B604589H
- X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos: Nature, 404 (2000) 59. https://doi.org/10.1038/35003535
- V. F. Puntes, D. Zanchet, C. K. Erdonmez, and A. P. Alivisatos: J. Am. Chem. Soc., 124 (2002) 12874. https://doi.org/10.1021/ja027262g
- I. Robinson, S. Zacchini, L. D. Tung, S. Maenosono and N. T. Thanh: Chem. Mater., 21 (2009) 3021. https://doi.org/10.1021/cm9008442
- Z. Tang and N. A. Kotov: Adv Mater., 17 (2005) 951. https://doi.org/10.1002/adma.200401593
- C. Wagner: Zeitschrift Fur Elektrochemie, Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 65 (1961) 581.
- H. Zheng, R. K. Smith, Y. Jun, C. Kisielowski, U. Dahmen and A. P. Alivisatos: Science, 324 (2009) 1309. https://doi.org/10.1126/science.1172104
- I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, J. Am. Chem. Soc., 128 (2006) 2385. https://doi.org/10.1021/ja056494n
- A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta and R. Viswanatha: J. Phys. Chem. Lett., 4 (2013) 3544. https://doi.org/10.1021/jz401958u
- X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang and X. Peng: Nature, 515 (2014) 96. https://doi.org/10.1038/nature13829
- C. B. Murray, C. R. Kagan and M. G. Bawendi: Annu. Rev. Mater. Sci., 30 (2000) 545. https://doi.org/10.1146/annurev.matsci.30.1.545
- C. de Mello Donega, P. Liljeroth and D. Vanmaekelbergh: Small, 1 (2005) 1152. https://doi.org/10.1002/smll.200500239
- S. G. Kwon and T. Hyeon: Small, 7 (2011) 2685. https://doi.org/10.1002/smll.201002022
- S. Asokan, K. M. Krueger, V. L. Colvin and M. S. Wong: Small, 3 (2007) 1164. https://doi.org/10.1002/smll.200700120
- Z. A. Peng and X. Peng: J. Am. Chem. Soc., 123 (2001) 1389. https://doi.org/10.1021/ja0027766
- L. Li and P. Reiss: J. Am. Chem. Soc., 130, (2008) 11588. https://doi.org/10.1021/ja803687e
- D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb: Science, 300 (2003) 1434. https://doi.org/10.1126/science.1083780
- D. Loss and D. P. DiVincenzo: Phys. Rev. A, 57 (1998) 120. https://doi.org/10.1103/PhysRevA.57.120
- D. M. Ratner, E. R. Murphy, M. Jhunjhunwala, D. A. Snyder, K. F. Jensen and P. H. Seeberger: Chem. Commun., (2005) 578.
- W. Lin, Y. Wang, S. Wang and H. Tseng: Nano Today, 4 (2009) 470. https://doi.org/10.1016/j.nantod.2009.10.007
- K. W. Wang, K. G. Lee, T. J. Park, Y. Lee, J. Yang, D. H. Kim, S. J. Lee and J. Y. Park: Biotechnol. Bioeng., 109 (2012) 289. https://doi.org/10.1002/bit.23286
- R. Kikkeri, P. Laurino, A. Odedra and P. H. Seeberger: Angew. Chem. Int. Ed., 49 (2010) 2054. https://doi.org/10.1002/anie.200905053
- B. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee and D. Y. Jeon: Small, 8 (2012) 3257. https://doi.org/10.1002/smll.201200773
- A. Günther and K. F. Jensen: Lab on a Chip, 6 (2006) 1487. https://doi.org/10.1039/B609851G
- S. Gomez-de Pedro, C. S. Martínez-Cisneros, M. Puyol and J. Alonso-Chamarro: Lab on a Chip, 12 (2012) 1979. https://doi.org/10.1039/c2lc00011c
- K. Kim, S. Jeong, J. Y. Woo and C. Han: Nanotechnology, 23 (2012) 065602. https://doi.org/10.1088/0957-4484/23/6/065602
- O. I. Micic, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik: J. Phys. Chem., 98 (1994) 4966. https://doi.org/10.1021/j100070a004
- R. G. Larson, E. S. Shaqfeh and S. J. Muller: J. Fluid Mech., 218 (1990) 573. https://doi.org/10.1017/S0022112090001124
- S. J. Muller, R. G. Larson and E. S. Shaqfeh: Rheol. Acta, 28 (1989) 499. https://doi.org/10.1007/BF01332920
- R. D. Moser, P. Moin and A. Leonard: J. of Computational Physics, 52 (1983) 524. https://doi.org/10.1016/0021-9991(83)90006-2
- P. S. Marcus: J. Fluid Mech., 146 (1984) 45. https://doi.org/10.1017/S0022112084001762
- B. Eckhardt, S. Grossmann and D. Lohse: J. Fluid Mech., 581 (2007) 221. https://doi.org/10.1017/S0022112007005629
- T. S. Tran, S. J. Park, S. S. Yoo, T. Lee and T. Kim: RSC Adv., 6 (2016) 12003. https://doi.org/10.1039/C5RA22273G
- Y. H. Song, S. H. Choi, W. K. Park, J. S. Yoo, S. B. Kwon, B. K. Kang, S. R. Park, Y. S. Seo, W. S. Yang and D. H. Yoon: Sci. Rep., 8 (2018) 2009. https://doi.org/10.1038/s41598-018-20376-3
- http://www.kims.re.kr/v17/bbx/content.php?co_id=02_02 _02
- T. Xuan, J. Liu, H. Li, H. Sun, L. Pan, X. Chen and Z. Sun: RSC Adv., 5 (2015) 7673. https://doi.org/10.1039/C4RA14982C
- S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. Kwok, C. Wang and W. Y. Teoh: J. Phys. Chem. C, 118 (2014) 16393. https://doi.org/10.1021/jp410279z
- Y. Huang, Y. Lan, Q. Yi, H. Huang, Y. Wang and J. Lu: Chem. Res. Chin. Univ., 32 (2016) 16. https://doi.org/10.1007/s40242-015-5279-8
- M. R. Hodlur and K. M. Rabinal: Chem. Eng. J., 244 (2014) 82. https://doi.org/10.1016/j.cej.2014.01.064
- Y. Shirasaki, G. J. Supran, M. G. Bawendi and V. Bulovic: Nat. Photonics, 7 (2013) 13. https://doi.org/10.1038/nphoton.2012.328