DOI QR코드

DOI QR Code

Fabrication of Mo-Cu Powders by Ball Milling and Hydrogen Reduction of MoO3-CuO Powder Mixtures

MoO3-CuO 혼합분말의 볼 밀링 및 수소분위기 열처리에 의한 Mo-Cu 복합분말 제조

  • Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 강현지 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2018.07.26
  • Accepted : 2018.08.03
  • Published : 2018.08.28

Abstract

The hydrogen reduction behavior of $MoO_3-CuO$ powder mixture for the synthesis of homogeneous Mo-20 wt% Cu composite powder is investigated. The reduction behavior of ball-milled powder mixture is analyzed by XRD and temperature programmed reduction method at various heating rates in Ar-10% $H_2$ atmosphere. The XRD analysis of the heat-treated powder at $300^{\circ}C$ shows Cu, $MoO_3$, and $Cu_2MoO_5$ phases. In contrast, the powder mixture heated at $400^{\circ}C$ is composed of Cu and $MoO_2$ phases. The hydrogen reduction kinetic is evaluated by the amount of peak shift with heating rates. The activation energies for the reduction, estimated by the slope of the Kissinger plot, are measured as 112.2 kJ/mol and 65.2 kJ/mol, depending on the reduction steps from CuO to Cu and from $MoO_3$ to $MoO_2$, respectively. The measured activation energy for the reduction of $MoO_3$ is explained by the effect of pre-reduced Cu particles. The powder mixture, hydrogen-reduced at $700^{\circ}C$, shows the dispersion of nano-sized Cu agglomerates on the surface of Mo powders.

Keywords

References

  1. C.-G. Hwang, G.-E. Jang, C.-W. Park, T.-H. Kim and Y.-W. Woo: J. Korean Soc. Heat Treat., 16 (2003) 311 (Korean).
  2. Y.-L. Shen, A. Needleman and S. Suresh: Metall. Mater. Trans. A, 25 (1994) 839.
  3. J.A. Shields Jr. and P. Lipetzky: JOM, 52 (2000) 37.
  4. G.-Q. Chen, L.-T. Jiang, G.-H. Wu, D.-Z. Zhu and Z.-Y. Xiu: Trans. Nonferr. Metal Soc., 17 (2007) s580.
  5. J.L. Johnson and R.M. German: Metall. Mater. Trans. A, 32 (2001) 605. https://doi.org/10.1007/s11661-001-0077-y
  6. J.L. Johnson and R.M. German: Int. J. Powder Metall., 35 (1999) 39.
  7. A. Sun, D. Wang, Z. Wu and X. Zan: J. Alloys Compd., 505 (2010) 588. https://doi.org/10.1016/j.jallcom.2010.06.080
  8. H.-C. Lee, K.-I. Moon and P.-K. Shin: J. Korean Inst. Electr. Electron. Mater. Eng., 29 (2016) 516 (Korean).
  9. D.-G. Kim, S.-T. Oh, H. Jeon, C.-H. Lee and Y.D. Kim: J. Alloys Compd., 354 (2003) 239. https://doi.org/10.1016/S0925-8388(03)00007-0
  10. N.-Y. Kwon, Y.-K. Jeong and S.-T. Oh: Korean J. Mater. Res., 27 (2017) 513. https://doi.org/10.3740/MRSK.2017.27.10.513
  11. G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709. https://doi.org/10.1006/jcat.1994.1257
  12. A. Sun, D. Wang, Z. Wu and Q. Cheng: J. Alloys Compd., 509 (2011) L74. https://doi.org/10.1016/j.jallcom.2010.11.019
  13. W.V. Schulmeyer and H.M. Ortner: Int. J. Refract. Met. Hard Mater., 20 (2002) 261. https://doi.org/10.1016/S0263-4368(02)00029-X
  14. G.-S. Kim, Y.J. Lee, D.-G. Kim and Y.D. Kim: J. Alloys Compd., 454 (2008) 327. https://doi.org/10.1016/j.jallcom.2006.12.039
  15. D.-G. Kim, K.H. Min, S.-Y. Chang, S.-T. Oh, C.-H. Lee and Y.D. Kim: Mater. Sci. Eng. A, 399 (2005) 326. https://doi.org/10.1016/j.msea.2005.04.010
  16. H.E. Kissinger: Anal. Chem., 29 (1957) 1702. https://doi.org/10.1021/ac60131a045
  17. P. Malet and A. Caballero: J. Chem. Soc., Faraday Trans. 1, 84 (1988) 2369. https://doi.org/10.1039/f19888402369
  18. L. Wang, G.-H. Zhang and K.-C. Chou: Int. J. Refract. Met. Hard Mater., 54 (2016) 342. https://doi.org/10.1016/j.ijrmhm.2015.09.003
  19. J. Dang, G.-H. Zhang, K.-C. Chou, R.G. Reddy, Y. He and Y. Sun: Int. J. Refract. Met. Hard Mater., 41 (2013) 216. https://doi.org/10.1016/j.ijrmhm.2013.04.002