DOI QR코드

DOI QR Code

Development of Carbon Nanotube-copper Hybrid Powder as Conductive Additive

  • Lee, Minjae (Seoul Science High School) ;
  • Ha, Seoungjun (Seoul Science High School) ;
  • Lee, Yeonjoo (Dept. of Advanced Materials Engineering, Kookmin University) ;
  • Jang, Haneul (Dept. of Advanced Materials Engineering, Kookmin University) ;
  • Choi, Hyunjoo (Dept. of Advanced Materials Engineering, Kookmin University)
  • Received : 2018.08.17
  • Accepted : 2018.08.21
  • Published : 2018.08.28

Abstract

A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.

Keywords

References

  1. P. C. Ma, B. Z. Tang, J. K. Kim: Carbon, 46 (2008) 1497. https://doi.org/10.1016/j.carbon.2008.06.048
  2. D. Zhao, T. Liu, J. G. Park, M. Zhang, J. M. Chen, B. Wang: Microelectron. Eng., 96 (2012) 71. https://doi.org/10.1016/j.mee.2012.03.004
  3. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth: Science, 265 (1994) 1212. https://doi.org/10.1126/science.265.5176.1212
  4. O. Lourie, D. M. Cox and H. D. Wagner: Phys. Rev. Lett., 81 (1998) 1638. https://doi.org/10.1103/PhysRevLett.81.1638
  5. L. S. Schadler, S. C. Giannaris and P. M. Ajayan: Appl. Phys. Lett., 73 (1998) 3842. https://doi.org/10.1063/1.122911
  6. S. G. Shin: Met. Mater. Int., 7 (2001) 605. https://doi.org/10.1007/BF03179259
  7. Y. Ando, X. Zhao, H. Shimoyama, G. Sakai and K. Kaneto: Int. J. Inorg. Mater., 1 (1999) 77. https://doi.org/10.1016/S1463-0176(99)00012-5
  8. T. Uchida and S. Kumar: J. Appl. Polym. Sci., 98 (2005) 985. https://doi.org/10.1002/app.22203
  9. S. Berber, Y. K. Kwon and D. Tomanek: Phys. Rev. Lett., 84 (2000) 4613. https://doi.org/10.1103/PhysRevLett.84.4613
  10. Y. Y. Huang and E. M. Terentjev: Polymer, 4 (2012) 275. https://doi.org/10.3390/polym4010275
  11. Y. Y. Huang and E. M. Terentjev: Adv. Funct. Mater., 20 (2010) 4062. https://doi.org/10.1002/adfm.201000861
  12. Hoboken: Solution processing of inorganic materials, D. B. Mitzi (Ed.), Wiley, Canada (2009) 511.
  13. K. D. Ausman, R. Piner, O. Lourie, R. S. Ruoff and M. Korobov: J. Phys. Chem. B, 104 (2000) 8911. https://doi.org/10.1021/jp002555m
  14. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley: Science, 280 (1998) 1253. https://doi.org/10.1126/science.280.5367.1253
  15. H. J. Choi, J.H. Shin and D.H. Bae: Compos. Part AAppl. S., 43 (2012) 1061. https://doi.org/10.1016/j.compositesa.2012.02.008
  16. C. Casiraghi, A. C. Ferrari and J. Robertson: Phys. Rev. B, 72 (2005) 85401. https://doi.org/10.1103/PhysRevB.72.085401
  17. S. Berber and A. Oshiyama: Physica B, 376 (2006) 272.
  18. N. Hu, Y. Karube, C. Yan, Z. Masuda and H. Fukunag: Acta Mater., 56 (2008) 2929. https://doi.org/10.1016/j.actamat.2008.02.030
  19. K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng and H. L. Li: Compos. Sci. Technol., 65 (2005) 719. https://doi.org/10.1016/j.compscitech.2004.10.005
  20. H. T. Ham, Y. S. Choi and I. J. Chung: J. Colloid Interf. Sci., 286 (2005) 216. https://doi.org/10.1016/j.jcis.2005.01.002