DOI QR코드

DOI QR Code

Study on the Development of Congestion Index for Expressway Service Areas Based on Floating Population Big Data

유동인구 빅데이터 기반 고속도로 휴게소 혼잡지표 개발 연구

  • 김해 (한국도로공사) ;
  • 이환필 (한국도로공사 도로교통연구원) ;
  • 권철우 (아주대학교 건설교통공학과 대학원) ;
  • 박성호 (아주대학교 건설교통공학과 대학원) ;
  • 박상민 (아주대학교 건설교통공학과 대학원) ;
  • 윤일수 (아주대학교 교통시스템공학과)
  • Received : 2018.06.04
  • Accepted : 2018.07.09
  • Published : 2018.08.31

Abstract

Service areas in expressways are very important facilities in terms of efficient expressway operation and the convenience of users. It needs a traffic management strategy to inform drivers in advance about congestion in service areas so as to distribute users of service areas. But due to the lack of sensors and data on numbers of people in the service areas, congestion in service areas had not been measured and managed appropriately. In this study, a congestion index for service areas was developed using telecommunication floating population big data. Two alternative indices (i.e., density of service areas and floating population V/c of service areas) were developed. Finally, the floating population V/c of service areas was selected as a congestion index for service areas for reasons of the ease of understanding and comparison.

고속도로 휴게소는 효율적인 고속도로 운영과 이용객의 편의를 위해 매우 중요한 시설로서 운전자에게 사전에 휴게소에 대한 혼잡 정도를 알려줌으로써 휴게소 이용객이 적절히 분산되도록 관리하는 교통운영 전략이 필요하다. 하지만, 현재 휴게소 이용인원을 측정할 수 있는 수집장치와 데이터의 부재로 인하여 휴게소에 대한 혼잡도 측정과 관리가 적절하게 이루어지지 못하고 있다. 이에 본 연구에서는 이동통신사의 휴대폰 기반 유동인구 빅데이터를 활용하여 고속도로 휴게소 혼잡지표를 개발하였다. 휴게소 혼잡지표로 '휴게소 밀도'와 '휴게소 유동인구 V/c', 두 가지를 대안으로 개발하였으며, 이 중 이해하기 쉽고 용량의 비교가 가능한 '휴게소 유동인구 V/c'를 휴게소 혼잡지표로 최종 선정하였다. 이용객들이 직관적으로 이해하기 쉽도록 휴게소 혼잡도 등급은 '여유', '약간혼잡', '혼잡'의 3단계로 설정하였다.

Keywords

References

  1. Choi J. K., Lee H. and Yoo B. S.(2014), "Development of an Algorithm for Estimation of Real-time Subway Platform Congestion using Public Transportation Card Data," Journal of The Korean Society for Railway, pp.1219-1228.
  2. Hwang S.(2002), "Development of Urban Congestion Index for Economic congestion Estimation," The Korea Transport Institute.
  3. Kim H.(2017a), Development of a Congestion Index for Expressway Service Areas Using Floating Population Big Data, Master Thesis, Ajou University.
  4. Kim H. J.(2017b), "Big data about Floating Population and Telecom Opens the age of Transportation Revolution," Monthly KOTI Magazine on Transport, vol. 229, pp.11-15.
  5. Kim K. T., Lee I. M., Kwak H. C. and Min J. H.(2015), "Application study of Telecommunication Record Data in Floating Population Estimation," Seoul Studies, vol. 16, no. 3, pp.177-187.
  6. Kong X., Xu Z., Shen G., Wang J., Yang Q. and Zhang B.(2015), "Urban Traffic Congestion Estimation and Prediction based on Floating Car Trajectory Data," Future Generation Computer Systems, Vol. 61, pp.97-107.
  7. Korea Expressway Corporation(2017), Current Status of Work at Rest Facilities.
  8. Korea Expressway Corporation, www.ex.co.kr, 2016.
  9. Korea Institute of Civil Engineering and Building Technology(2014), A Study on Improvement of Classification System of Use of Building.
  10. Ministry of Land, Infrastructure and Transport(2013), Highway Capacity Analysis.
  11. Ministry of Land, Infrastructure and Transport(2017), Press Release About Expansion to 20 Locations of Guide to Service Areas Congestion in This Year.
  12. Ministry of the Interior and Safety(2015), Performance-Oriented Design Methods and Standards for Fire Fighting Facilities.
  13. Seoul(2013), Public-Private Convergence Big Data and Public Data.
  14. Sun J., Wen H., Gao Y. and Hu Z.(2009), "Metropolitan Congestion Performance Measures Based on Mass Floating Car Data," 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, Hainan, China, pp.109-113.